Startseite Free Volume from Pressure and Temperature Dependent Viscosity and from PVT Measurements for Homo- and Copolymers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Free Volume from Pressure and Temperature Dependent Viscosity and from PVT Measurements for Homo- and Copolymers

  • L. Halász und A. Huszár
Veröffentlicht/Copyright: 6. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Pressure and temperature dependency of shear and elongation viscosity and the thermal expansivity and the compressibility determined from PVT data were investigated for propylene homo- and propylene-1-pentene, -1-hexene, 1-heptene and -nonene copolymers and ethylene homopolymer and ethylene-1-butene, 1-pentene and 1-hexene copolymers. The short branching degree dependence of thermal sensitivity and pressure coefficient and the thermal expansivity and the compressibility has been determined. The fractional free volumes were calculated from the viscosity and PVT curves and the thermal expansion coefficient and compressibility factor of fractional free volume were determined. The temperature, pressure and stress dependence of fractional free volume was investigated. The fractional free volume calculated from viscosity data were compared from values comes from PVT measurement. A conversion equation was suggested.


Mail address: László Halász, Miklós Zrínyi National Defence University, H-1011 Budapest, Hungária krt 9–11, Hungary. E-mail:

References

Barus, C. J., “Note on the Dependence of Viscosity on Pressure and Temperature”, Proc. Am. Acad., 27, 1319(1891), DOI: 10.2307/20020462Suche in Google Scholar

Binding, D. M., et al., “The Pressure Dependence of the Shear and Elongational Properties of Polymer Melts”, J. Non-Newton Fluid Mech., 79, 137155(1998), DOI: 10.1016/S0377-0257(98)00102-5Suche in Google Scholar

Capt, L., Kamal, M., “The Pressure–volume–temperature Dependence Behaviour of Polyethylene Melts”, Int. Polym. Proc., 15, 8394(2001)Suche in Google Scholar

Cardinaels, R., et al., “Evaluation and Comparison of Routes to Obtain Pressure Coefficient from High-pressure Capillary Rheometry Data”, Rheol. Acta, 46, 495505(2007), DOI: 10.1007/s00397-006-0148-5Suche in Google Scholar

Carreras, E. S., et al., “Pressure Effects on Viscosity and Flow Stability of Polyethylene Melts during Extrusion”, Rheol. Acta, 45, 209222(2006), DOI: 10.1007/s00397-005-0010-1Suche in Google Scholar

Carreau, P. I., “Rheological Equation from Molecular Network Theories”, Trans. Soc. Rheol., 16, 99127(1972), DOI: 10.1122/1.549276Suche in Google Scholar

Cogswell, F. N., “Converging Flow of Polymer Melts in Extrusion Dies”, Polym. Eng. Sci., 12, 6468(1972a), DOI: 10.1002/pen.760120111Suche in Google Scholar

Cogswell, F. N., McGowan, J. C., “The Effects of Pressure and Temperature upon the Viscosities of Liquids with Special Referencc to Polymeric Liquids”, Br. Polym. J., 4, 183198(1972b), DOI: 10.1002/pi.4980040304Suche in Google Scholar

Couch, M. A., Binding, D. M., “High Pressure Capillary Rheometry of Polymeric Fluids”, Polymer, 41, 63236334(2000), DOI: 10.1016/S0032-3861(99)00865-4Suche in Google Scholar

Dealy, J. M., “Misuse of the Term Pressure in Rheology”, Rheology Bulletin, 77, 1013, 2627(2008)Suche in Google Scholar

Doolitlle, A. K., “Studies in Newtonian flow 2. The Dependence of the Viscosity of Liquids on Free-space”, J. Appl. Phys., 22, 14711475(1951), DOI: 10.1063/1.1699894Suche in Google Scholar

Doolittle, A. K., “Studies in Newtonian flow III. The Dependence of the Viscosity of Liquids on Molecular Weight and Free-space (in Homologous Series)”, J. Appl. Phys, 23, 236239(1952), DOI: 10.1063/1.1702182Suche in Google Scholar

Fox, T. G., Flory, P., “Second Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight”, J. Appl. Phys., 21, 581591(1950), DOI: 10.1063/1.1699711Suche in Google Scholar

Goubert, A., et al., “Comparison of Measurement Techniques for Evaluating the Pressure Dependence of the Viscosity”, J. Appl. Rheol., 11, 2632(2001)Suche in Google Scholar

Göttfert Rheograph 25/75/120, High Pressure Capillary Rheometers, Production Description (2007)Suche in Google Scholar

Halász, L., et al., “Rheological, Thermal and Crystallization Properties of Ethylene, Propylene and α-Olefin Copolymers I. Rheological Properties”, Plast. Rubber Compos., 33, 195203(2004), DOI: 10.1179/174328904X4909Suche in Google Scholar

Halász, L., et al., “Rheological, Thermal and Crystallization Properties of Ethylene, Propylene and α-Olefin Copolymers II. Thermal and Crystallization Properties”, Plast. Rubber Compos., 33, 204211(2004)Suche in Google Scholar

Halász, L., et al., “The Effect of Short Chain Branching on the Rheological and Thermal Properties of Olefin-α-Olefin Copolymers”, Rheol. Acta, 44, 7680(2005)Suche in Google Scholar

Huilgol, R. R., “On the Definition of Pressure in Rheology”, Rheology Bulletin, 78, 1215, 29(2009)Suche in Google Scholar

Kajdik, S. E., Van Den Brule, B. H., “On the Pressure Depence of Viscosity of Molten Polymers”. Polym. Eng. Sci., 34, 15351546(1994), DOI: 10.1002/pen.760342004Suche in Google Scholar

Larson, R. G.: Constitutive Equations for Polymer Melts and Solution, Butterworth, Boston, London(1988)10.1016/B978-0-409-90119-1.50012-9Suche in Google Scholar

La Mantia, F. P., “Non-Linear Viscoelasticity of Polymer Liquids Interpreted by Means of a Stress Dependence of Free Volume”, Rheol. Acta, 16, 302308(1972), DOI: 10.1007/BF01523740Suche in Google Scholar

Laun, H. M., “Pressure Dependent Viscosity and Dissipative Heating in Capillary Rheometry of Polymer Melts”, Rheol. Acta, 42, 295308(2003), DOI: 10.1007/s00397-002-0291-6Suche in Google Scholar

Laun, H. M., “Capillary Rheometry for Polymer Melts Revisited”, Rheol Acta, 43, 509528(2004), DOI: 10.1007/s00397-004-0387-2Suche in Google Scholar

Laun, H. M., Such, H., “Transient Elongational Viscosities and Drawability of Polymer Melts”, J. Rheol., 33, 119134(1989), DOI: 10.1122/1.550058Suche in Google Scholar

Mackey, M. R., Spitteler, P. H. J., “Experimental Observations on the Pressure Dependent Polymer Melt Rheology of Linear Low-Density Polyethylene Using Multi-Pass Rheometer”, Rheol. Acta, 35, 202209(1996), DOI: 10.1007/BF00396047Suche in Google Scholar

Macosko, C. W.: Rheology: Principles, Measurements and Applications, Wiley-VCH, New York(1994)Suche in Google Scholar

Oosterlinck, F.: Flow of Polymers under High Pressure, Master Thesis, Katholieke Universiteit Leuven, Belgium(2000)Suche in Google Scholar

Prigogine, I., et al.: The Molecular Theory of Solutions, North Holland, Amsterdam(1957)Suche in Google Scholar

Sanches, I. C., Lacombe, R. H., “Statistical Thermodynamics of Polymer Solutions”, Macromolecules, 11, 11451156(1978), DOI: 10.1021/ma60066a017Suche in Google Scholar

SanchesI.C., LacombeR.H., “Elementary Molecular Theory of Classical Fluids-Pure Fluids”, J. Phys. Chem., 80, 23532362(1976)Suche in Google Scholar

Sarkar, D., Gupta, M., “Further Investigation of the Effect of Elongational Viscosity on Entrance Flow”, J. Reinf. Plastics Compos., 14731478(2001)10.1177/073168401772679101Suche in Google Scholar

Sato, Y., et al., “PVT Properties Polyethylene Copolymer Melts”, Fluid Phase Equilibra, 257, 124130(2007), DOI: 10.1016/j.fluid.2007.01.013Suche in Google Scholar

Sedlacek, T., et al., “On the Effect of Pressure on the Shear and Elongational Viscosity of Polymer Melts”, Polym Eng. Sci., 44, 13281332(2004), DOI: 10.1002/pen.20128Suche in Google Scholar

Sedlacekt, C. R., et al., “On PVT and Rheological Measurements of Polymer Melts”, Int. Polym. Proc., 20, 286295(2005)Suche in Google Scholar

Simha, R., Slomcynsky, T., “On the Statistical Thermodynamics of Spherical and Chain Molecule Fluids”, Macromolecules, 2, 342350(1969), DOI: 10.1021/ma60010a005Suche in Google Scholar

Simha, R., “Polymer and Oligomer Melts Thermodynamics, Correlations and Lattice Hole Theory”, Polym. Eng. Sci., 36, 15671573(1996), DOI: 10.1002/pen.10553Suche in Google Scholar

Simha, R., “Configurational Thermodynamics of the Liquid and Glassy Polymeric States”, Macromolecules, 10, 10251035(1977), DOI: 10.1021/ma60059a028Suche in Google Scholar

Simha, R., et al., “Bulk Modulus and Thermal Expansivity of Melt Polymer Composites Statistical Versus Micromechanics”, Polym. Compos., 5, 310(1984), DOI: 10.1002/pc.750050104Suche in Google Scholar

Slomcynsky, T., Simha, R., “Hole Theory of Liquids and Glass Transition”, J. Appl. Phys., 42, 45454548(1971), DOI: 10.1063/1.1659821Suche in Google Scholar

Tincul, I., et al., “Propylene Copolymers with Linear Fischer-Tropsch Derived a-Olefins”, Polypropylene'99, 8th Annual Wold Congress, Zürich (1999)Suche in Google Scholar

Utracki, L. A., “Pressure Dependence of Newtonian Viscosity”. Polym. Eng. Sci., 23, 446451(1983), DOI: 10.1002/pen.760230806Suche in Google Scholar

Utracki, L. A., “A Method of Computation of Pressure Effect on Melt Viscosity”, Polym. Eng. Sci., 25, 655668(1985), DOI: 10.1002/pen.760251104Suche in Google Scholar

Utracki, L. A., “Correlation between P–V–T Behaviour and the Zero Shear Viscosity of Liquid Mixtures”, in Hartmann, B. (Ed.) Thermodynamics and Rheology, J. Rheol., 30, 829841(1986)Suche in Google Scholar

Utracki, L. A., “Pressure–Volume–Temperature Dependencies of Polystyrenes”, Polymer, 46, 1154811556(2005), DOI: 10.1016/j.polymer.2005.10.020Suche in Google Scholar

Utracki, L. A., Simha, R., “Analytical Representation of Solutions to Lattice-Hole Theory”, Macromol. Chem. Phys. Molecul. Theory Simul., 10, 1724(2001), DOI: 10.1002/1521-3919(20010101)10:1<17::AID-MATS17>3.0.CO;2-BSuche in Google Scholar

Utracki, L. A., Sedlacek, T., “Free Volume Dependence of Polymer Viscosity”, Rheol. Acta, 46, 479494. (2007), DOI: 10.1007/s00397-006-0133-zSuche in Google Scholar

Yasuda, K. Y., et al., “Shear Flow Properties of Concentrated Solutions of Linear and Short Branched Polystyrenes”. Rheol. Acta, 20, 163178(1981), DOI: 10.1007/BF01513059Suche in Google Scholar

Received: 2010-11-18
Accepted: 2011-03-28
Published Online: 2013-04-06
Published in Print: 2011-09-01

© 2011, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Evaluation of Vacuum Venting for Micro-injection Molding
  5. Effect of Mechanical Milling on the Thermal Behavior of Polyethylene Reinforced with Nano-sized Alumina
  6. Preparation of Poly(acrylic acid)-Poly(ethylene oxide) Nanofibers via Electrospinning and Investigation of Their Morphology
  7. Concentration Effects of Organosilane (TESPD) on Mechanical Properties of Silica Filled Silicone Rubber/Natural Rubber Compounds
  8. Microcellular PP vs. Microcellular PP/MMT Nanocomposites: A Comparative Study of Their Mechanical Behavior
  9. Influence of Processing Conditions on Productivity, Thermal and Rheological Properties of Reprocessed Low Density Polyethylene
  10. Optimization of Dispersion of Nanosilica Particles in a PP Matrix and Their Effect on Foaming
  11. Paint/Polymer Interface Structure for ABS Injection Moldings
  12. Free Volume from Pressure and Temperature Dependent Viscosity and from PVT Measurements for Homo- and Copolymers
  13. Investigation into the Differences in the Selective Laser Sintering between Amorphous and Semi-crystalline Polymers
  14. Rheological Modeling and Dynamic Characteristics of Disc Extruders
  15. The Effect of Polymer Additives on Surface Quality of Microcellular Injection Molded Parts
  16. Using Supercritical Carbon Dioxide for Physical Foaming of Advanced Polymer Materials
  17. Effect of Ionomer on Barrier and Mechanical Properties of PET/Organoclay Nanocomposites Prepared by Melt Compounding
  18. Rapid Communications
  19. Triangle Rule for Operating Windows and Scale-up Criteria for Volume Resistivity of PP/Carbon Nanotubes Composites
  20. Crystallization in Polymer Melts: Metamorphism of Flow Induced Nuclei
  21. PPS-News
  22. PPS News
  23. Seikei Kakou Abstracts
  24. Seikei-Kakou Abstracts
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2448/html
Button zum nach oben scrollen