Home Modelling of Cyclic 3-Dimensional Heat Transfer in Injection Moulding
Article
Licensed
Unlicensed Requires Authentication

Modelling of Cyclic 3-Dimensional Heat Transfer in Injection Moulding

  • A. Polynkin , J. F. T. Pittman and J. Sienz
Published/Copyright: May 2, 2013
Become an author with De Gruyter Brill

Abstract

A detailed 3-dimensional analysis of cyclic heat transfer in a complex injection moulding mould tool has been carried out, using a general-purpose commercial heat transfer code (FIDAP). A novel, generally applicable technique for modelling of heat loss to ambient from the tool parting surfaces is introduced, to facilitate inclusion of the mould-open period in the modelling. Simulations are continued through 30 cycles of moulding, to attainment of steady periodic conditions. During this period temperatures at the polymer-steel interface rose by between 10 °C and 40°C above the coolant temperature. At the start of cooling, values of cavity surface heat transfer coefficients referred to the coolant temperature ranged from approximately 4000 W/m2K to 400 W/m2K, with the highest values occurring directly below the cooling channels and the lowest near a heated sprue bush. At the end of the cooling period, values at each location had dropped by approximately an order of magnitude. These results illustrate the limitations of plastics cooling analyses that use constant values of temperature or heat transfer coefficients as boundary conditions on the cavity surface. Comparison with results obtained omitting the modelling of the mould-open period shows how, in the latter case, higher tool temperatures are attained in the steady periodic conditions, and a larger number of cycles are required to reach steady periodic conditions.


Mail address: J. F. T. Pittman, Centre for Polymer Processing Simulation and Design, School of Engineering, University of Wales Swansea, SA2 8PP, UK E-mail:

References

1 Yu, C. J., Sunderland, J. E., Poli, C.: Polym. Eng. Sci.30, p. 1599 (1990).10.1002/pen.760302408Search in Google Scholar

2 Sridhar, L., Yin, W., Narh, K. A.: SPE Antec Tech. Papers, p. 2545 (1999).Search in Google Scholar

3 Delaunay, D., Le Bot, P.: Polym. Eng. and Sci.40, p. 1692 (2000).10.1002/pen.11301Search in Google Scholar

4 Himasekhar, K., Lottey, J., Wang, K. K.: SPE Antec Tech. Papers, p. 1103 (1990).Search in Google Scholar

5 Kwon, T. H., Shen, S. F., Wang, K. K.: SPE Antec Tech. Papers, p. 110 (1990).Search in Google Scholar

6 Chen, I.-C., Hu, S. Y., Davidoff, A.: SPE Antec Tech. Papers, p. 499 (1991).10.1016/0306-3747(91)90405-BSearch in Google Scholar

7 Himasekhar, K., Lottey, J., Wang, K. K.: Trans. ASME, J. Eng. for Ind.114, p. 213 (1992).Search in Google Scholar

8 www.moldflow.com.Search in Google Scholar

9 Barone, M. R., Caulk, D. A.: Q. J. Mech. Appl. Math.34, p. 265 (1981).10.1093/qjmam/34.3.265Search in Google Scholar

10 Park, S. J., Kwon, T. H.: Trans. ASME J. Manuf. Sci. and Eng.120, p. 287 (1998).10.1115/1.2830126Search in Google Scholar

11 Chen, S.-C., Chung, Y.-C.: Int. Comm. Heat Mass Trans.19, p. 559 (1992).10.1016/0735-1933(92)90011-6Search in Google Scholar

12 Chang, Y. P., Hu, S. Y., Chen, S. C.: Int. Comm. Heat Mass Trans.25, p. 989 (1998).10.1016/S0735-1933(98)00090-6Search in Google Scholar

13 Hu, S. Y., Cheng, N. T., Chen, S. C.: Plastics Rubber and Composites Proc. and Appl.23, p. 221 (1995).Search in Google Scholar

14 Chen, S.-C., Hu, S.-Y., Chao, S.-M.: Polym. Eng. Sci.40, p. 595 (2000).10.1002/pen.11190Search in Google Scholar

15 Barros, I., Teixeira, S. F. C. F., Brito, A. M., Cunha, A. M., Teixeira, J. C. F.: Proceeding PPS 19, Guimares, Portugal (2002).Search in Google Scholar

16 Tang, L. Q., Pochiraju, K., Chassapis, C., Manoochehri, S.: Int. J. Num. Meth. Eng.39, p. 3049 (1996).10.1002/(SICI)1097-0207(19960930)39:18<3049::AID-NME988>3.0.CO;2-XSearch in Google Scholar

17 Batkam, S., Coupey, T.: Proc. 4th Int. ESAFORM (European Scientific Assoc. for Material Forming) Conf., Liege, Belgium, p. 31 (2001).Search in Google Scholar

18 Tang, L. Q., Chassapis, C., Manoochehri, S.: Finite Elements in Analysis and Design26, p. 229 (1997).10.1016/S0168-874X(96)00083-2Search in Google Scholar

19 Park, S. J., Kwon, T. H.: Trans. ASME J. Manuf. Sci. and Eng.120, p. 296 (1998).10.1115/1.2830127Search in Google Scholar

20 www.sigmasoft.com.Search in Google Scholar

21 www.fluent.com.Search in Google Scholar

22 Polynkin, A., Pittman, J. F. T., Belblidia, F., Sienz, J., Brookshaw, B. L., Copeland, W.: Proceeding 5th Int. ESAFORM (European Scientific Assoc. for Material Forming) Conf., Krakow (2002).Search in Google Scholar

23 Polynkin, A., Pittman, J. F. T., Sienz, J.: Proceeding 6th Int. ESAFORM Conf., Salerno (2003).Search in Google Scholar

24 Belblidia, F., Pittman, J. F. T., Polynkin, A., Sienz, J.: Proceeding 6th Int. ESAFORM Conf., Salerno (2003).Search in Google Scholar

25 Private communication with Cinpres Gas Injection Ltd. (2001).Search in Google Scholar

26 Fishenden, M., Saunders, O. A.: An Introduction to Heat Transfer. Oxford (1950).Search in Google Scholar

27 Illinka, F., Hetu, J. F.: Int. J. Numerical Meth. Eng.53, p. 2003 (2002).10.1002/nme.370Search in Google Scholar

28 Manero, F., Kamal, M. R., Lai-Fook, R. A., Varela, A. E., Patterson, W. I.: Int. Polym. Process.18, p. 185 (2003).10.3139/217.1728Search in Google Scholar

Received: 2004-1-15
Accepted: 2004-11-8
Published Online: 2013-05-02
Published in Print: 2004-12-01

© 2004, Carl Hanser Verlag, Munich

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.1850/html
Scroll to top button