Home On-line Visualization of PS/PP Melting Mechanisms in a Co-rotating Twin Screw Extruder
Article
Licensed
Unlicensed Requires Authentication

On-line Visualization of PS/PP Melting Mechanisms in a Co-rotating Twin Screw Extruder

  • H. Chen , U. Sundararaj , K. Nandakumar and M. D. Wetzel
Published/Copyright: May 2, 2013
Become an author with De Gruyter Brill

Abstract

The melting and deformation mechanisms of polystyrene (PS) and polypropylene (PP) blends were investigated through on-line visualization of the co-rotating twin-screw extrusion process. Two compositions, PP/PS (80:20) and PS/PP (80: 20) were chosen as the model systems for this study. A sliding barrel technique was used to realize the on-line visualization using a glass window in the barrel. The axial temperature and pressure profiles along the screw channel were measured using the same sliding technique. It was found that in the PP/PS (80:20) blend, in which PP was the major phase, there was a combined melting of PS and PP, whereas in the PS/PP (80:20) blend, in which PS was the major phase, there was initial melting of PS alone and then combined melting of PS and PP. In the partially filled region, heat conduction from the hot barrel was the major source for heating polymer pellets under the conditions studied here; while in the fully filled region, viscous energy dissipation (VED) generated most of the heat for melting of polymer pellets. The pressure profiles along the extrusion channel gave us insight into the melting process for the two blends. It was found that if there was some molten polymer in the fully filled region, the overall melting process was accelerated due to heating from viscous dissipation.


Mail address: U. Sundararaj, Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada, T6G 2G6 E-mail:

References

1 Paul, D. R., Newman, S.: Polymer Blends, V1. Academic Press, New York (1978).Search in Google Scholar

2 Wu, S.: Polymer26, p. 1855 (1985).10.1016/0032-3861(85)90015-1Search in Google Scholar

3 Subramanian, P. M.: Polym. Eng. Sci.25, p. 483 (1985).10.1002/pen.760250810Search in Google Scholar

4 Lindt, J. T., Ghosh, A. K.: Polym. Eng. Sci.32, p. 1802 (1992).10.1002/pen.760322403Search in Google Scholar

5 Scott, C. E., Macosko, C. W.: Polym. Bull.26, p. 341 (1991).10.1007/BF00587979Search in Google Scholar

6 Sundararaj, U., Macosko, C. W., Rolando, R. J., Chan, H. T.: Polym. Eng. Sci.32, p. 1814 (1992).10.1002/pen.760322404Search in Google Scholar

7 Potente, H., Bastian, M., Bergemann, K., Senge, M., Scheel, G., Winkelmann, T.: Polym. Eng. Sci.41, p. 222 (2001).10.1002/pen.10723Search in Google Scholar

8 Potente, H., Melisch, U.: Int. Polym. Process.11, p. 101 (1996).10.3139/217.960101Search in Google Scholar

9 Potente, H., Bastian, M., Gehring, A., Stephan, M., Potschke, P.: J. Appl. Polym. Sci.76, p. 708 (2000).10.1002/(SICI)1097-4628(20000502)76:5<708::AID-APP13>3.0.CO;2-1Search in Google Scholar

10 Potente, H., Bastian, M., Bergemann, K., Senge, M., Scheel, G., Winkelmann, T.: Int. Polym. Process.16, p. 143 (2001).10.3139/217.1641Search in Google Scholar

11 Potente, H., Krawinkel, S., Bastian, M., Stephan, M., Potschke, P.: J. Appl. Polym. Sci.82, p. 1986 (2001).10.1002/app.2044Search in Google Scholar

12 Potente, H., Bastian, M.: Int. Polym. Process.16, p. 14 (2001).10.3139/217.1619Search in Google Scholar

13 Qian, B., Todd, D. B., Gogos, C. G.: Adv. Polym. Tech.22, p. 85 (2003).10.1002/adv.10039Search in Google Scholar

14 Gogos, C. G., Tadmor, Z., Kim, M. H.: Adv. Polym. Tech.17, p. 285 (1998).10.1002/(SICI)1098-2329(199824)17:4<285::AID-ADV1>3.0.CO;2-NSearch in Google Scholar

15 Esseghir, M., Yu, D. W., Gogos, C. G.: SPE Antec Tech. Papers53, p. 1994 (1995).Search in Google Scholar

16 Lee, J. K., Han, C. D.: Polymer41, p. 1799 (2000).10.1016/S0032-3861(99)00325-0Search in Google Scholar

17 HanC. D., Lee, K. Y., Wheeler, N. C.: Polym. Eng. Sci.36, p. 1360 (1996).10.1002/pen.10531Search in Google Scholar

18 Bawiskar, S., White, J. L.: Int. Polym. Process.10, p. 105 (1995).10.3139/217.950105Search in Google Scholar

19 Cho, J. W., White, J. L.: Int. Polym. Process.11, p. 21 (1996).10.3139/217.960021Search in Google Scholar

20 Bawiskar, S., White, J. L.: Int. Polym. Process.12, p. 331, 1997.10.3139/217.970331Search in Google Scholar

21 Lee, S. H., White, J. L.: Int. Polym. Process.13, p. 247, 1998.10.3139/217.980247Search in Google Scholar

22 Bawiskar, S., White, J. L.: Polym. Eng. Sci.38, p. 727 (1998).10.1002/pen.10238Search in Google Scholar

23 Jung, H., White, J. L.: Int. Polym. Process.18, p. 127 (2003).10.3139/217.1741Search in Google Scholar

24 Sakai, T.: Adv. Polym. Tech.14, p. 277 (1995).10.1002/adv.1995.060140402Search in Google Scholar

25 Zhu, L., Geng, X.: Adv. Polym. Tech.21, p. 188 (2002).10.1002/adv.10021Search in Google Scholar

26 Wetzel, M. D.: SPE Antec Tech. Papers, p. 3707 (2002).Search in Google Scholar

27 McCullough, T., Hilton, B.: SPE Antec Tech. Papers, p. 3372 (1993).Search in Google Scholar

28 Christiano, J. P., Lindenflezer, M.: SPE Antec Tech. Papers, p. 8 (1997).Search in Google Scholar

29 Schlatter, G., Serra, C., Bouquey, M., Muller, R., Terrisse, J.: Polym. Eng. Sci.42, p. 1965 (2002).10.1002/pen.11089Search in Google Scholar

30 Boyer, R. F.: J. Polym. Sci. C14, p. 267 (1966).10.1002/polc.5070140120Search in Google Scholar

31 Enns, J. B., Boyer, R. F., Ishida, H., Koenig, J. L.: Polym. Eng. Sci.19, p. 756 (1979).10.1002/pen.760191016Search in Google Scholar

32 Smith, P. M., Boyer, R. F., Kumler, P. L.: Macromolecules12, p. 61 (1979).10.1021/ma60067a013Search in Google Scholar

33 Curry, J.: SPE Antec Tech. Papers, p. 92 (1995).Search in Google Scholar

Received: 2004-7-14
Accepted: 2004-8-24
Published Online: 2013-05-02
Published in Print: 2004-12-01

© 2004, Carl Hanser Verlag, Munich

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.1839/html
Scroll to top button