Simulation of Core Deflection in Powder Injection Molding
-
D. Ling
, M. Gupta , P. R. Myers und R. K. Upadhyay
Abstract
Core deflection in powder injection molding is one of the main causes of the structural defects in the molded part. Simulation of the core deflection in the injection molding process requires solution of the fluid-solid interaction problem, in which the fluid flow and solid deformation problems are coupled along the fluid-solid interface. A three-dimensional finite element program was developed in this work for a non-isothermal injection molding simulation including the fluid-solid interaction effects. With the assumption of small deformation in the solid structure, the fluid flow problem is formulated in an Eulerian frame-work, whereas the solid structure problem is formulated in a Lagrangian framework. Numerical simulation of the filling stage of injection molding for an airfoil-shaped part is presented and compared with the experimental data. The predicted melt-front advancement as well as the pressure is in good agreement with the corresponding experimental results. The predicted core deflection during the filling stage of the injection molding process is also compared with the measurements on a molded part.
References
1 1 Hieber, C. A., Shen, S. F.: Journal of Non-Newtonian Fluid Mechanics7, p. 1 (1980)10.1016/0377-0257(80)85012-9Suche in Google Scholar
2 2 Ilinca, F., Hetu, J. F., Derdouri, A., Stevenson, J.: Polym. Eng. Sci. 42, p. 760 (2002)10.1002/pen.10988Suche in Google Scholar
3 3 PELDOM Software, Plastic Flow, LLC, 1206 Birch Street, Houghton, MI 49931 (www.plasticflow.com).Suche in Google Scholar
4 4 Kwon, T. H., Ahn, S. Y.: Powder Technology85, p. 45 (1995)10.1016/0032-5910(95)03001-PSuche in Google Scholar
5 5 Hwang, C. J., Kwon, T. H.: Polym. Eng. Sci. 42, p. 33 (2002)10.1002/pen.10926Suche in Google Scholar
6 6 Mackerle, J.: Finite Elements in Analysis and Design31, p. 231 (1999)10.1016/S0168-874X(98)00065-1Suche in Google Scholar
7 7 Ghattas, O., Li, X.: Journal of Computational Physics121, p. 356 (1995)10.1016/S0021-9991(95)90204-XSuche in Google Scholar
8 8 Fourcade, E., Bertrand, F., Réglat, O., Tanguy, P. A.: Computer Methods in Applied Mechanics and Engineering174, p. 235 (1999)10.1016/S0045-7825(98)00281-3Suche in Google Scholar
9 9 Zhang, H., Zhang, X., Ji, S., Guo, Y.: Computers and Structures81, p. 1071 (2003)10.1016/S0045-7949(03)00009-9Suche in Google Scholar
10 10 Baaijens, F. P. T.: International Journal for Numerical Mechanics in Fluids35, p. 743 (2001)10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-ASuche in Google Scholar
11 11 Hart, J. D., Peters, G. W. M., Schreurs, P. J. G., Baaijens, F. P. T.: Journal of Biomechanics36, p. 103 (2003)10.1016/S0021-9290(02)00244-0Suche in Google Scholar
12 12 Engelstein, G.: SPE ANTEC Tech. Papers50, p. 511 (2004)Suche in Google Scholar
13 13 Bakharev, A., Fan, Z., Han, S.: SPE ANTEC Tech. Papers50, p. 621 (2004)Suche in Google Scholar
14 14 Belytschko, T., Liu, W. K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. John Wiley, New York (2002)Suche in Google Scholar
15 15 Plapp, J. E.: Engineering Fluid Mechanics. Prentice Hall, New Jersy (1968)Suche in Google Scholar
16 16 Coupez, T., Marie, S.: The International Journal of Supercomputer Applications and High Performance Computing, 11, p. 277 (1997)10.1177/109434209701100402Suche in Google Scholar
17 17 Babuska, I.: Numer. Math. 16, p. 322 (1971)10.1007/BF02165003Suche in Google Scholar
18 18 Brezzi, F.: RAIRO Numerical Analysis8, p. 129 (1974)10.1051/m2an/197408R201291Suche in Google Scholar
19 19 Bathe, K. J.: Finite Element Procedures. Prentice Hall, New Jersey (1998)Suche in Google Scholar
20 20 Argyris, J., Doltsinis, J. St., Fischer, H., Wüsternberg, H.: Computer Methods in Applied Mechanics and Engineering, 51, 289–362 (1985)10.1016/0045-7825(85)90038-6Suche in Google Scholar
21 21 Brooks, A. N., Hughes, T. J. R.: Computer Methods in Applied Mechanics and Engineering32, p. 199 (1981)10.1016/0045-7825(82)90071-8Suche in Google Scholar
22 22 Hirt, C. W., Nicholos, B. D.: Journal of Computational Physics39, p. 201 (1981)10.1016/0021-9991(81)90145-5Suche in Google Scholar
23 23 Papanastasiou, T. C.: Journal of Rheology31, p. 385 (1987)10.1122/1.549926Suche in Google Scholar
24 24 Panametrics-NDT, R/D Tech Instruments Inc., 48 Woerd Ave, Watham, MA, 02453 (www.panametrics-ndt.com)Suche in Google Scholar
© 2006, Hanser Publishers, Munich
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- New Multicomponent Compatibilization System for Polyolefin/Polystyrene Blends
- Preparation and Characterization of HMW PA 6 via Anionic Polymerization of ∊-Caprolactam by Using a Mixture of Di- and Tri-functional Chain Initiators
- Polymer Processing Extrusion Instabilities and Methods for their Elimination or Minimisation
- Microcellular Wood Fibre Reinforced PP Composites
- Effects of Take-up Speed of Melt Spinning on the Structure and Mechanical Propertiesof Maximally Laser Drawn PA9-T Fibers
- Description of the Pressure/Throughput Behavior of a Single-screw Plasticating Unit in Consideration of Wall Slippage Effects for Non-Newtonian Material and 1-D flow
- Study of Starch Gelatinization in a Flow Field Using Simultaneous Rheometric Data Collection and Microscopic Observation
- Analysis of the Residual Stresses in the Process of Nanoimprint Lithography
- The Reactive Extrusion of Thermoplastic Polyurethane and the Effect of the Depolymerization Reaction
- Simulation of Core Deflection in Powder Injection Molding
- Experimental Investigation of the Cooling Flow in the Film Blowing Process
- Study of the Compatibilizer Effect on Blends Prepared from Waste Poly(ethylene-terephthalate) and High Density Polyethylene
- PPS News
- PPS News
- Seikei-Kakou Abstracts
- Seikei-Kakou Abstracts
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- New Multicomponent Compatibilization System for Polyolefin/Polystyrene Blends
- Preparation and Characterization of HMW PA 6 via Anionic Polymerization of ∊-Caprolactam by Using a Mixture of Di- and Tri-functional Chain Initiators
- Polymer Processing Extrusion Instabilities and Methods for their Elimination or Minimisation
- Microcellular Wood Fibre Reinforced PP Composites
- Effects of Take-up Speed of Melt Spinning on the Structure and Mechanical Propertiesof Maximally Laser Drawn PA9-T Fibers
- Description of the Pressure/Throughput Behavior of a Single-screw Plasticating Unit in Consideration of Wall Slippage Effects for Non-Newtonian Material and 1-D flow
- Study of Starch Gelatinization in a Flow Field Using Simultaneous Rheometric Data Collection and Microscopic Observation
- Analysis of the Residual Stresses in the Process of Nanoimprint Lithography
- The Reactive Extrusion of Thermoplastic Polyurethane and the Effect of the Depolymerization Reaction
- Simulation of Core Deflection in Powder Injection Molding
- Experimental Investigation of the Cooling Flow in the Film Blowing Process
- Study of the Compatibilizer Effect on Blends Prepared from Waste Poly(ethylene-terephthalate) and High Density Polyethylene
- PPS News
- PPS News
- Seikei-Kakou Abstracts
- Seikei-Kakou Abstracts