Effects of Ni and Al on the Cu-precipitation in ferritic Fe–Cu–M (M = Ni or Al) alloy
-
Haiyan Wang
, Chengmeng Wang , Xueyun Gao und Huiping Ren
Abstract
The effects of nickel and aluminum on the precipitation of copper-rich precipitates in Fe–Cu ferritic alloy were investigated by combining experiments and first-principles calculations. With the addition of Ni and Al, the Fe–Cu–M (M = Ni or Al) alloy reaches the peak ageing condition earlier than the Fe–Cu binary system during ageing at 500 °C. The transmission electron microscopy results indicate that the average sizes of the copper-rich particles in the Fe–Cu–Ni and Fe–Cu–Al alloys are smaller than that in the Fe–Cu alloy, while the density numbers of the former are larger than the latter. The interactions of the copper atom with nickel and aluminum atoms are all attractive in the first nearest neighbor shell. These attractions increase the local concentration of nickel and aluminum around copper and promote the clustering of solutes, consequently increasing the nucleation rate of Cu-rich precipitates.
References
[1] S.K.Dhua, D.Mukerjee, D.S.Sarma: Metall. Mater. Trans.A 32 (2001) 2259. 10.1007/s11661-001-0201-zSuche in Google Scholar
[2] S.Vaynman, D.Isheim, R.P.Kolli, S.P.Bhat, D.N.Seidman, M.E.Fine: Metall. Mater. Trans.A 39 (2008) 363. 10.1007/s11661-007-9417-xSuche in Google Scholar
[3] D.Isheim, R.P.Kolli, M.E.Fine, D.N.Seidman: Scr. Mater.55 (2006) 35. 10.1016/j.scriptamat.2006.02.040Suche in Google Scholar
[4] M.Hättestrand, J.O.Nilson, K.Stiller, P.Liu, M.Anderson: Acta Mater.52 (2004) 1023. 10.1016/j.actamat.2003.10.048Suche in Google Scholar
[5] Z.W.Zhang, C.T.Liu, Y.R.Wen, A.Hirata, S.Guo, G.Chen, M.W.Chen, Bryan A.Chin: Metal. Mater. Trans.A 43 (2012) 351. 10.1007/s11661-011-0835-4Suche in Google Scholar
[6] X.Yu, J.L.Caron, S.S.Babu, J.C.Lippold, D.Isheim, D.N.Seidman: Acta Mater.58 (2010) 5596. 10.1016/j.actamat.2010.06.031Suche in Google Scholar
[7] A.Deschamps, M.Militzer, W.J.Poole: ISIJ Int.41 (2001) 196. 10.2355/isijinternational.41.196Suche in Google Scholar
[8] T.Harry, D.J.Bacon: Acta Mater.50 (2002) 195. 10.1016/S1359-6454(01)00331-7Suche in Google Scholar
[9] M.E.Fine, D.Isheim: Scr. Mater.53 (2005) 115. 10.1016/j.scriptamat.2005.02.034Suche in Google Scholar
[10] M.E.Fine, J.Z.Liu, M.D.Asta: Mater. Sci. Eng.A 463 (2007) 271. 10.1016/j.msea.2006.07.164Suche in Google Scholar
[11] R.Monzen, K.Takada, K.Matsuda: Z. Metallkd.94 (2003) 1241. 10.3139/146.031241Suche in Google Scholar
[12] D.Isheim, R.P.Kolli, M.E.Fine, D.N.Seidman: Scr. Mater.55 (2006) 35. 10.1016/j.scriptamat.2006.02.040Suche in Google Scholar
[13] I.Holzer, E.Kozeschnik: Mater. Sci. Eng.A 527 (2010) 3546. 10.1016/j.msea.2010.02.032Suche in Google Scholar
[14] N.Maruyama, N.Sugiyama, T.Hara, H.Tamehiro: Mater. Trans. JIM40 (1999) 268. 10.2320/matertrans1989.40.268Suche in Google Scholar
[15] T.H.Lee, Y.O.Kim, S.J.Kim: Philos. Mag.87 (2007) 209. 10.1080/14786430600909014Suche in Google Scholar
[16] R.Bauer, E.Bischoff, E.J.Mittemeijer: Phys. Rev.B 81 (2010) 094113. 10.1103/PhysRevB.81.094113Suche in Google Scholar
[17] Y.U.Heo, J.S.Kim, J.K.Kim: Acta Mater.61 (2013) 519. 10.1016/j.actamat.2012.09.068Suche in Google Scholar
[18] D.Isheim, M.S.Gagliano, M.E.Fine, D.N.Seidman: Acta Mater.54 (2006) 841. 10.1016/j.actamat.2005.10.023Suche in Google Scholar
[19] Q.Sheng, X.Xiong, T.Li, H.Chen, Y.Cheng, W.Liu: Acta Mater.723 (2018) 279. 10.1016/j.msea.2018.03.053Suche in Google Scholar
[20] K.Osamura, H.Okuda, K.Asano, M.Furusaka, K.Kishida, F.Kurosawa, R.Uemori: ISIJ Int.34 (1994) 359. 10.2355/isijinternational.34.359Suche in Google Scholar
[21] Z.W.Zhang, C.T.Liu, X.L.Wang, K.C.Littrell, M.K.Miller, K.An, B.A.Chin: Phys. Rev.B 84 (2011) 174114. 10.1103/PhysRevB.84.174114Suche in Google Scholar
[22] H.Guo, M.Enomoto, C.J.Shang: Comput. Mater. Sci.141 (2018) 101. 10.1016/j.commatsci.2017.09.023Suche in Google Scholar
[23] Q.Liu, J.Gu, W.Liu: Metall. Mater. Trans.A 44 (2013) 4434. 10.1007/s11661-013-1933-2Suche in Google Scholar
[24] G.Kresse, J.Hafner: Phys. Rev.B 47 (1993) 558. 10004490 10.1103/PhysRevB.47.558Suche in Google Scholar
[25] P.E.Blöchl: Phys. Rev.B 50 (1994) 17953. 9976227 10.1103/PhysRevB.50.17953Suche in Google Scholar
[26] Y.Wang, J.P.Perdew: Phys. Rev.B 44 (1991) 13298. 9999531 10.1103/PhysRevB.44.13298Suche in Google Scholar PubMed
[27] M.Acet, H.Zähres, E.F.Wassermann, W.Pepperhoff: Phys. Rev.B49 (1994) 6012. 10011580 10.1103/PhysRevB.49.6012Suche in Google Scholar
[28] D.Simonovic, C.K.Ande: Phys. Rev.B 81 (2010) 054116. 10.1103/PhysRevB.81.054116Suche in Google Scholar
[29] J.G.Jung, M.Jung, S.M.Lee, E.Shin, H.C.Shin, Y.K.Lee: J. Alloys Compd.553 (2013) 299. 10.1016/j.jallcom.2012.11.108Suche in Google Scholar
[30] A.N.Bhagat, S.K.Pabi, S.Ranganathan, O.N.Mohanty: ISIJ Int.44 (2004) 115. 10.2355/isijinternational.44.115Suche in Google Scholar
[31] Y.R.Wen, A.Hirata, Z.W.Zhang, T.Fujita, C.T.Liu, J.H.Jiang, M.W.Chen: Acta Mater.61 (2013) 2133. 10.1016/j.actamat.2012.12.034Suche in Google Scholar
[32] S.K.Ghosh, A.Haldar, P.P.Chattopadhyay: Mater. Sci. Eng.A519 (2009) 88. 10.1016/j.msea.2009.05.013Suche in Google Scholar
[33] A.Ghosh, B.Mishra, S.Das, S.Chatterjee: Mater. Sci. Eng.A374 (2004) 43. 10.1016/j.msea.2003.11.047Suche in Google Scholar
[34] R.P.Kolli, D.N.Seidman: Acta Mater.56 (2008) 2073. 10.1016/j.actamat.2007.12.044Suche in Google Scholar
[35] A.Seko, N.Odagaki, S.R.Nishitani, I.Tanaka, H.Adachi: Mater. Trans.45 (2004) 1978. 10.2320/matertrans.45.1978Suche in Google Scholar
[36] P.Olsson, T.P.C.Klaver, C.Domain: Phys. Rev.B 81 (2010) 054102. 10.1103/PhysRevB.81.054102Suche in Google Scholar
[37] L.Messina, M.Nastar, T.Garnier, C.Domain, P.Olsson: Phys. Rev.B 90 (2014) 104203. 10.1103/PhysRevB.90.104203Suche in Google Scholar
[38] O.I.Gorbatov, Y.N.Gornostyrev, P.A.Korzhavyi, A.V.Ruban: Scr. Mater.102 (2015) 11. 10.1016/j.scriptamat.2015.01.016Suche in Google Scholar
[39] G.Salje, M.Feller-Kniepmeier: J. Appl. Phys.48 (1977) 1833. 10.1063/1.323934Suche in Google Scholar
[40] K.Hirano, M.Cohen, B.Averbach: Acta Metall.9 (1961) 440. 10.1063/1.1728564Suche in Google Scholar
[41] H.Amara, C.C.Fu, F.Soisson, P.Maugis: Phys. Rev.B 81 (2010) 174101. 10.1103/PhysRevB.81.174101Suche in Google Scholar
[42] T.Koyama, H.Onodera: Mater. Trans.46 (2005) 1187. 10.2320/matertrans.46.1187Suche in Google Scholar
[43] A.Takeuchi, A.Inoue, Mater. Trans.46 (2005) 2817. 10.2320/matertrans.46.2817Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- The softening factor cb of commercial titanium alloy wires
- A comparative assessment of cyclic deformation behavior of SA333 Gr-6 steel at ambient and elevated temperatures
- Effects of Ni and Al on the Cu-precipitation in ferritic Fe–Cu–M (M = Ni or Al) alloy
- Effect of manganese on the microstructure and mechanical properties of magnesium alloys
- Effect of heat treatment and extrusion on wear properties of AZ91-Pr alloy
- Effect of anodization treatment on the mechanical properties and fatigue behavior of AA2017-T4 aluminum alloy Al–Cu–Mg1
- Microstructural and tribological characterization of molybdenum–molybdenum carbide structures produced by spark plasma sintering
- Investigation of indentation and dry sliding wear behaviour of Al-12.6 wt.% Si-10 wt.% TiB2 composites produced by sequential milling and pressureless sintering
- Enthalpies of mixing in ternary Ce–Cu–Sb liquid alloys
- Effect of in-situ formation of AlP on solidification of hypereutectic Al–Si alloy
- Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
- Internal electromagnetic stirring method for preparing a large-sized aluminum alloy billet
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- The softening factor cb of commercial titanium alloy wires
- A comparative assessment of cyclic deformation behavior of SA333 Gr-6 steel at ambient and elevated temperatures
- Effects of Ni and Al on the Cu-precipitation in ferritic Fe–Cu–M (M = Ni or Al) alloy
- Effect of manganese on the microstructure and mechanical properties of magnesium alloys
- Effect of heat treatment and extrusion on wear properties of AZ91-Pr alloy
- Effect of anodization treatment on the mechanical properties and fatigue behavior of AA2017-T4 aluminum alloy Al–Cu–Mg1
- Microstructural and tribological characterization of molybdenum–molybdenum carbide structures produced by spark plasma sintering
- Investigation of indentation and dry sliding wear behaviour of Al-12.6 wt.% Si-10 wt.% TiB2 composites produced by sequential milling and pressureless sintering
- Enthalpies of mixing in ternary Ce–Cu–Sb liquid alloys
- Effect of in-situ formation of AlP on solidification of hypereutectic Al–Si alloy
- Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
- Internal electromagnetic stirring method for preparing a large-sized aluminum alloy billet
- DGM News
- DGM News