Enthalpies of mixing in ternary Ce–Cu–Sb liquid alloys
-
Michael Ivanov
, Natalia Usenko , Natalia Kotova and Natalia Golovataya
Abstract
The enthalpies of mixing in liquid alloys of the ternary Ce–Cu–Sb system were determined over a wide range of compositions by means of isoperibolic calorimetry at temperature 1300 K. Measurements were performed along five sections (xCu/xSb = 0.20/0.80; 0.40/0.60 and 0.60/0.40 for xCe changed from 0 up to 0.35 and xCu/xCe = 0.20/0.80 and 0.60/0.40 for xSb changed from 0 up to 0.25). The enthalpies of mixing in the ternary system were found to be exothermic and steadily increasing in absolute values from the binary constituent systems Ce–Cu and Cu–Sb towards the Ce–Sb boundary, reaching the minimum value of approximately –120 kJ · mol–1 in the vicinity of the phase CeSb.
References
[1] J.M.Mosby, A.L.Prieto: J. Am. Chem. Soc.130 (2008) 10656–10661. 18627144 10.1021/ja801745nSearch in Google Scholar
[2] J.Chen, Z.Yin, D.Sim, Y.Y.Tay, H.Zhang, J.Ma, H.H.Hng, Q.Yan: Nanotechnology22 (2011) 325602. 10.1088/0957-4484/22/32/325602Search in Google Scholar
[3] W.J.Yao, B.Wei: J. Alloys Compd.366 (2004) 165–170. 10.1016/S0925-8388(03)00738-2Search in Google Scholar
[4] J.R.Gao, N.Wang, B.Wei: Mater. Sci. Forum329–330 (2000) 13–18. 10.4028/www.scientific.net/MSF.329-330.13Search in Google Scholar
[5] P.Wachter, L.Degiorgi, G.Wetzel, H.Schwer. Phys. Rev.B 60 (1999) 9518–9524. 10.1103/PhysRevB.60.9518Search in Google Scholar
[6] A.Thamizhavel, T.Takeuchi, T.Okubo, M.Yamada, R.Asai, S.Kirita, A.Galatanu, E.Yamamoto, T.Ebihara, Y.Inada, R.Settai, Y.Onuki: Phys. Rev.B 68 (2003) 054427. 10.1103/PhysRevB.68.054427Search in Google Scholar
[7] N.Usenko, N.Kotova, M.Ivanov, V.Berezutski: Int. J. Mater. Res.104 (2013) 46–50. 10.3139/146.110834Search in Google Scholar
[8] N.Usenko, N.Kotova, M.Ivanov, V.Berezutski: Int. J. Mater. Res.107 (2016) 13–20. 10.3139/146.111319Search in Google Scholar
[9] X.Su, J.-C.Tedenac: Calphad30 (2006) 455–460. 10.1016/j.calphad.2006.06.003Search in Google Scholar
[10] X.J.Liu, C.P.Wang, I.Ohnuma, R.Kainuma, K.Ishida: J. Phase Equilib.21 (2000) 432–442. 10.1361/105497100770339608Search in Google Scholar
[11] W.Gierlotka, D.Jendrzejczyk-Handzlik: J. Alloys Compd.484 (2009) 172–176. 10.1016/j.jallcom.2009.05.056Search in Google Scholar
[12] O.J.Kleppa: J. Phys. Chem.60 (1956) 852–858. 10.1021/j150541a005Search in Google Scholar
[13] S.Takeuchi, O.Uemura, S.Ikeda: Sci. Rep. Res. Inst. Tohoku Univ.25A (1974) 41–55.Search in Google Scholar
[14] E.Hayer, K.I.Komarek, R.Castanet: Z. Metallkd.68 (1977) 688–698.Search in Google Scholar
[15] J.J.Lee, B.J.Kim, W.S.Min: J. Alloys Compd.202 (1993) 237–242. 10.1016/0925-8388(93)90545-XSearch in Google Scholar
[16] W.Zhuang, Z.-Y.Qiao, S.Wei, J.Shen: J. Phase Equilib.17 (1996) 508–521. 10.1007/BF02665998Search in Google Scholar
[17] M.A.Turchanin, I.V.Nikolaenko, G.I.Batalin: Rasplavy (rus).2 (1988) 25–28.Search in Google Scholar
[18] K.Fitzner, O.J.Kleppa: Metal. Mater. Trans.A 25 (1994) 1495–1500. 10.1007/BF02665481Search in Google Scholar
[19] H.Bo, S.Jin, L.G.Zhang, X.M.Chen, H.M.Chen, L.B.Liu, F.Zheng, Z.P.Jin: J. Alloys Compd.484 (2009) 286–295. 10.1016/j.jallcom.2009.04.083Search in Google Scholar
[20] A.V.Morozkin, V.N.Nikiforov, N.Imaoka, I.Morimoto: J. Alloys Compd.422 (2006) L5–L8. 10.1016/j.jallcom.2005.12.010Search in Google Scholar
[21] N.V.Kotova, M.I.Ivanov, N.I.Usenko: Fr. Ukr. J. Chem.5 (2017) 24–29. 10.17721/fujcV5I2P24-29Search in Google Scholar
[22] N.I.Usenko, M.I.Ivanov, V.M.Petiuh, V.T.Witusiewicz: J. Alloys Compd.190 (1993) 149–155. 10.1016/0925-8388(93)90391-YSearch in Google Scholar
[23] A.T.Dinsdale: Calphad15 (1991) 317–425. 10.1016/0364-5916(91)90030-NSearch in Google Scholar
[24] C.W.Bale, A.D.Pelton: Metall. Trans.5 (1974) 2323–2337. 10.1007/BF02644013Search in Google Scholar
[25] L.S.Darken: J. Am. Chem. Soc.72 (1950) 2909–2914. 10.1021/ja01163a030Search in Google Scholar
[26] R.Lück, U.Gerling, B.Predel: Z. Metallkd.77 (1976) 442–448.Search in Google Scholar
[27] Y.M.Muggianu, M.Gambino, J.P.Bros: J. Chim. Phys. Physicochim. Biol.72 (1975) 83–88. 10.1051/jcp/1975720083Search in Google Scholar
[28] M.C.Day, J.Selbin: Theoretical Inorganic Chemistry, Reinhold, New York (1969). 10.1039/j19690000233Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- The softening factor cb of commercial titanium alloy wires
- A comparative assessment of cyclic deformation behavior of SA333 Gr-6 steel at ambient and elevated temperatures
- Effects of Ni and Al on the Cu-precipitation in ferritic Fe–Cu–M (M = Ni or Al) alloy
- Effect of manganese on the microstructure and mechanical properties of magnesium alloys
- Effect of heat treatment and extrusion on wear properties of AZ91-Pr alloy
- Effect of anodization treatment on the mechanical properties and fatigue behavior of AA2017-T4 aluminum alloy Al–Cu–Mg1
- Microstructural and tribological characterization of molybdenum–molybdenum carbide structures produced by spark plasma sintering
- Investigation of indentation and dry sliding wear behaviour of Al-12.6 wt.% Si-10 wt.% TiB2 composites produced by sequential milling and pressureless sintering
- Enthalpies of mixing in ternary Ce–Cu–Sb liquid alloys
- Effect of in-situ formation of AlP on solidification of hypereutectic Al–Si alloy
- Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
- Internal electromagnetic stirring method for preparing a large-sized aluminum alloy billet
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- The softening factor cb of commercial titanium alloy wires
- A comparative assessment of cyclic deformation behavior of SA333 Gr-6 steel at ambient and elevated temperatures
- Effects of Ni and Al on the Cu-precipitation in ferritic Fe–Cu–M (M = Ni or Al) alloy
- Effect of manganese on the microstructure and mechanical properties of magnesium alloys
- Effect of heat treatment and extrusion on wear properties of AZ91-Pr alloy
- Effect of anodization treatment on the mechanical properties and fatigue behavior of AA2017-T4 aluminum alloy Al–Cu–Mg1
- Microstructural and tribological characterization of molybdenum–molybdenum carbide structures produced by spark plasma sintering
- Investigation of indentation and dry sliding wear behaviour of Al-12.6 wt.% Si-10 wt.% TiB2 composites produced by sequential milling and pressureless sintering
- Enthalpies of mixing in ternary Ce–Cu–Sb liquid alloys
- Effect of in-situ formation of AlP on solidification of hypereutectic Al–Si alloy
- Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
- Internal electromagnetic stirring method for preparing a large-sized aluminum alloy billet
- DGM News
- DGM News