Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
-
Haixia Sun
, Fang Yang , Zhimeng Guo , Xinyue Zhang and Qian Qin
Abstract
Hot isostatic pressing is the most common method to prepare powder metallurgy high speed steel. However, due to the limitation of the steel capsule, it is still a challenge to directly produce complex-shaped high speed steel. Therefore, a gelcasting sintering process is proposed in this study. Complex-shaped high speed steel parts were prepared. First, fine powders (10 μm) were employed to prepare a gelcasting slurry. Then, the slurry was poured into a silicone mould followed by debonding and pressureless sintering. Nearly full densification was achieved in the gelcasting sintered samples. Homogeneous microstructure was observed with fine carbides (1 – 2 μm) evenly distributed in the matrix. Compared to traditional samples prepared by hot isostatic pressing, the bend strength increased from 2 800 MPa to 3 800 MPa. Additionally, the oxygen content of the sintered samples was lower than 100 ppm.
References
[1] F.Meurling, A.Melander, M.Tidesten, L.Westin: Int. J. Fatigue.23 (2001) 215. 10.1016/S0142-1123(00)00087-6Search in Google Scholar
[2] H.Peng, L.Hu, L.Li, L.Zhang, X.Zhang: J. Alloys Compd.740 (2018) 766. 10.1016/j.jallcom.2017.12.264Search in Google Scholar
[3] J.Yao, X.Qu, X.He, L.Zhang: Mater. Sci. Eng.A 528 (2011) 4180. 10.1016/j.msea.2011.02.016Search in Google Scholar
[4] S.Sackl, H.Leitner, H.Clemens, S.Primig: Mater. Charact.120 (2016) 323. 10.1016/j.matchar.2016.09.021Search in Google Scholar
[5] H.Peng, L.Hu, T.Ngai, L.Li, X.Zhang, H.Xie, W.Gong: Mater. Sci. Eng.A 719 (2018) 21. 10.1016/j.msea.2018.02.010Search in Google Scholar
[6] S.Eroglu: Mater. Manuf. Process.25 (2010) 1025. 10.1080/10426914.2010.489591Search in Google Scholar
[7] A.Molinari, M.Pellizzari, S.Gialanella, G.Straffelini, K.Stiasny: J. Mater. Process. Technol.118 (2001) 350. 10.1016/S0924-0136(01)00973-6Search in Google Scholar
[8] M.Kalin, V.Leskovšek, J.Vižintin: Mater. Manuf. Process.21 (2006) 741. 10.1080/10426910600727924Search in Google Scholar
[9] F.Cajner, V.Leskovšek, D.Landek, H.Cajner: Mater. Manuf. Process.24 (2009) 743. 10.1080/10426910902809743Search in Google Scholar
[10] Y.Torres, S.Rodrıíguez, A.Mateo, M.Anglada, L.Llanes: Mater. Sci. Eng.A 387 (2004) 501. 10.1016/j.msea.2003.12.072Search in Google Scholar
[11] R.A.Mesquita, C.A.Barbosa: Mater. Sci. Eng.A 383 (2004) 87. 10.1016/j.msea.2004.02.035Search in Google Scholar
[12] G.Zhang, H.Yuan, D.Jiao, Z.Li, Y.Zhang, Z.Liu: Mater. Sci. Eng.A 558 (2012) 566. 10.1016/j.msea.2012.08.050Search in Google Scholar
[13] O.Grinder: Met. Powder Rep.62 (2007) 16. 10.1016/S0026-0657(07)70190-XSearch in Google Scholar
[14] F.L.Han, F.K.Ma, Y.J.Cao: Chinese engineering materials, Chemical Industry Press, Beijing (2006). 10.1016/j.msea.2005.09.075Search in Google Scholar
[15] Y.K.Deng, J.R.Chen, S.Z.Wang: High speed tool steel, Beijing Metallurgical industry press, Beijing (2001).Search in Google Scholar
[16] A.Eklund, M.Ahlfors: Met. Powder Rep.73 (2018) 163. 10.1016/j.mprp.2018.01.001Search in Google Scholar
[17] C.Cai, B.Song, Q.Wei, W.Yan, P.Xue, Y.Shi: Metall. Mater. Trans.A 48 (2017) 34.10.1007/s11661-016-3796-9Search in Google Scholar
[18] C.Cai, B.Song, C.Qiu, L.Li, P.Xue, Q.Wei, J.Zhou, H.Nan, H.Chen, Y.Shi: J. Alloys Compd.710 (2017) 364. 10.1016/j.jallcom.2017.03.160Search in Google Scholar
[19] R.Xie, D.Zhang, X.Zhang, K.Zhou, T.W.Button: Ceram. Int.38 (2012) 6923. 10.1016/j.ceramint.2012.05.027Search in Google Scholar
[20] K.Niihara, B.S.Kim, T.Nakayama, T.Kusunose, T.Nomoto, A.Hikasa, T.Sekino: J. Eur. Ceram. Soc.24 (2004) 3419. 10.1016/j.jeurceramsoc.2003.10.027Search in Google Scholar
[21] Y.Li, Z.Guo, J.Hao, S.Ren: J. Mater. Process. Technol.208 (2008) 457. 10.1016/j.jmatprotec.2008.01.009Search in Google Scholar
[22] H. ElRakayby, K.Kim: Mater. Des.99 (2016) 433. 10.1016/j.matdes.2016.03.057Search in Google Scholar
[23] A.Flodin, M.Andersson, A.Miedzinski: Met. Powder Rep.72 (2017) 107. 10.1016/j.mprp.2016.02.057Search in Google Scholar
[24] L.M.Roncery, I.Lopez-Galilea, B.Ruttert, S.Huth, W.Theisen: Mater. Des.97 (2016) 544. 10.1016/j.matdes.2016.02.051Search in Google Scholar
[25] T.Yildiz, N.Kati, A.K.Gür: J. Alloys Compd.737 (2018) 8. 10.1016/j.jallcom.2017.12.097Search in Google Scholar
[26] D.Zhang, Z.Li, L.Xie, Y.Xiao, F.Yin: Int. J. Mater. Res.106 (2015) 870. 10.3139/146.111239Search in Google Scholar
[27] D.W.Hetzner: Mater. Charact.46 (2001) 175.10.1016/S1044-5803(01)00121-8Search in Google Scholar
[28] M.Wieβner, M.Leisch, H.Emminger, A.Kulmburg: Mater. Charact.59 (2008) 937. 10.1016/j.matchar.2007.08.002Search in Google Scholar
[29] S.Huth, W.Theisen: Powder Metall.52 (2009) 90 10.1179/174329009X459593Search in Google Scholar
[30] Q.Ye, H.Zhu, L.Zhang, J.Ma, L.Zhou, P.Liu, J.Chen, G.Chen, J.Peng: J. Alloys Compd.613 (2014) 102. 10.1016/j.jallcom.2014.06.016Search in Google Scholar
[31] K.Park, H.Jang, C.Choi: J. Aerosol Sci.22 (1991) S113. 10.1016/S0021-8502(05)80047-3Search in Google Scholar
[32] L.Li, Z.Gao, A.Li, J.Yi, Y.Ge: J. Magn. Magn. Mater.464 (2018) 161. 10.1016/j.jmmm.2018.05.053Search in Google Scholar
[33] A.Rousseau, J.Partridge, Y.Gözükara, S.Gulizia, D.McCulloch: Vacuum124 (2016) 85. 10.1016/j.vacuum.2015.11.019Search in Google Scholar
[34] M.Godec, B.Š.Batič, D.Mandrino, A.Nagode, V.Leskovšek, S.D.Škapin, M.Jenko: Mater. Charact.61 (2010) 452. 10.1016/j.matchar.2010.02.003Search in Google Scholar
[35] Q.Zhang, Y.Jiang, W.Shen, H.Zhang, Y.He, N.Lin, C.T.Liu, H.Huang, X.Huang: Mater. Des.112 (2016) 469. 10.1016/j.matdes.2016.09.044Search in Google Scholar
[36] S.Gimenez, I.Iturriza: J. Mater. Process Technol.143 (2003) 555. 10.1016/S0924-0136(03)00359-5Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- The softening factor cb of commercial titanium alloy wires
- A comparative assessment of cyclic deformation behavior of SA333 Gr-6 steel at ambient and elevated temperatures
- Effects of Ni and Al on the Cu-precipitation in ferritic Fe–Cu–M (M = Ni or Al) alloy
- Effect of manganese on the microstructure and mechanical properties of magnesium alloys
- Effect of heat treatment and extrusion on wear properties of AZ91-Pr alloy
- Effect of anodization treatment on the mechanical properties and fatigue behavior of AA2017-T4 aluminum alloy Al–Cu–Mg1
- Microstructural and tribological characterization of molybdenum–molybdenum carbide structures produced by spark plasma sintering
- Investigation of indentation and dry sliding wear behaviour of Al-12.6 wt.% Si-10 wt.% TiB2 composites produced by sequential milling and pressureless sintering
- Enthalpies of mixing in ternary Ce–Cu–Sb liquid alloys
- Effect of in-situ formation of AlP on solidification of hypereutectic Al–Si alloy
- Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
- Internal electromagnetic stirring method for preparing a large-sized aluminum alloy billet
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- The softening factor cb of commercial titanium alloy wires
- A comparative assessment of cyclic deformation behavior of SA333 Gr-6 steel at ambient and elevated temperatures
- Effects of Ni and Al on the Cu-precipitation in ferritic Fe–Cu–M (M = Ni or Al) alloy
- Effect of manganese on the microstructure and mechanical properties of magnesium alloys
- Effect of heat treatment and extrusion on wear properties of AZ91-Pr alloy
- Effect of anodization treatment on the mechanical properties and fatigue behavior of AA2017-T4 aluminum alloy Al–Cu–Mg1
- Microstructural and tribological characterization of molybdenum–molybdenum carbide structures produced by spark plasma sintering
- Investigation of indentation and dry sliding wear behaviour of Al-12.6 wt.% Si-10 wt.% TiB2 composites produced by sequential milling and pressureless sintering
- Enthalpies of mixing in ternary Ce–Cu–Sb liquid alloys
- Effect of in-situ formation of AlP on solidification of hypereutectic Al–Si alloy
- Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
- Internal electromagnetic stirring method for preparing a large-sized aluminum alloy billet
- DGM News
- DGM News