Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
-
Haixia Sun
Abstract
Hot isostatic pressing is the most common method to prepare powder metallurgy high speed steel. However, due to the limitation of the steel capsule, it is still a challenge to directly produce complex-shaped high speed steel. Therefore, a gelcasting sintering process is proposed in this study. Complex-shaped high speed steel parts were prepared. First, fine powders (10 μm) were employed to prepare a gelcasting slurry. Then, the slurry was poured into a silicone mould followed by debonding and pressureless sintering. Nearly full densification was achieved in the gelcasting sintered samples. Homogeneous microstructure was observed with fine carbides (1 – 2 μm) evenly distributed in the matrix. Compared to traditional samples prepared by hot isostatic pressing, the bend strength increased from 2 800 MPa to 3 800 MPa. Additionally, the oxygen content of the sintered samples was lower than 100 ppm.
References
[1] F.Meurling, A.Melander, M.Tidesten, L.Westin: Int. J. Fatigue.23 (2001) 215. 10.1016/S0142-1123(00)00087-6Search in Google Scholar
[2] H.Peng, L.Hu, L.Li, L.Zhang, X.Zhang: J. Alloys Compd.740 (2018) 766. 10.1016/j.jallcom.2017.12.264Search in Google Scholar
[3] J.Yao, X.Qu, X.He, L.Zhang: Mater. Sci. Eng.A 528 (2011) 4180. 10.1016/j.msea.2011.02.016Search in Google Scholar
[4] S.Sackl, H.Leitner, H.Clemens, S.Primig: Mater. Charact.120 (2016) 323. 10.1016/j.matchar.2016.09.021Search in Google Scholar
[5] H.Peng, L.Hu, T.Ngai, L.Li, X.Zhang, H.Xie, W.Gong: Mater. Sci. Eng.A 719 (2018) 21. 10.1016/j.msea.2018.02.010Search in Google Scholar
[6] S.Eroglu: Mater. Manuf. Process.25 (2010) 1025. 10.1080/10426914.2010.489591Search in Google Scholar
[7] A.Molinari, M.Pellizzari, S.Gialanella, G.Straffelini, K.Stiasny: J. Mater. Process. Technol.118 (2001) 350. 10.1016/S0924-0136(01)00973-6Search in Google Scholar
[8] M.Kalin, V.Leskovšek, J.Vižintin: Mater. Manuf. Process.21 (2006) 741. 10.1080/10426910600727924Search in Google Scholar
[9] F.Cajner, V.Leskovšek, D.Landek, H.Cajner: Mater. Manuf. Process.24 (2009) 743. 10.1080/10426910902809743Search in Google Scholar
[10] Y.Torres, S.Rodrıíguez, A.Mateo, M.Anglada, L.Llanes: Mater. Sci. Eng.A 387 (2004) 501. 10.1016/j.msea.2003.12.072Search in Google Scholar
[11] R.A.Mesquita, C.A.Barbosa: Mater. Sci. Eng.A 383 (2004) 87. 10.1016/j.msea.2004.02.035Search in Google Scholar
[12] G.Zhang, H.Yuan, D.Jiao, Z.Li, Y.Zhang, Z.Liu: Mater. Sci. Eng.A 558 (2012) 566. 10.1016/j.msea.2012.08.050Search in Google Scholar
[13] O.Grinder: Met. Powder Rep.62 (2007) 16. 10.1016/S0026-0657(07)70190-XSearch in Google Scholar
[14] F.L.Han, F.K.Ma, Y.J.Cao: Chinese engineering materials, Chemical Industry Press, Beijing (2006). 10.1016/j.msea.2005.09.075Search in Google Scholar
[15] Y.K.Deng, J.R.Chen, S.Z.Wang: High speed tool steel, Beijing Metallurgical industry press, Beijing (2001).Search in Google Scholar
[16] A.Eklund, M.Ahlfors: Met. Powder Rep.73 (2018) 163. 10.1016/j.mprp.2018.01.001Search in Google Scholar
[17] C.Cai, B.Song, Q.Wei, W.Yan, P.Xue, Y.Shi: Metall. Mater. Trans.A 48 (2017) 34.10.1007/s11661-016-3796-9Search in Google Scholar
[18] C.Cai, B.Song, C.Qiu, L.Li, P.Xue, Q.Wei, J.Zhou, H.Nan, H.Chen, Y.Shi: J. Alloys Compd.710 (2017) 364. 10.1016/j.jallcom.2017.03.160Search in Google Scholar
[19] R.Xie, D.Zhang, X.Zhang, K.Zhou, T.W.Button: Ceram. Int.38 (2012) 6923. 10.1016/j.ceramint.2012.05.027Search in Google Scholar
[20] K.Niihara, B.S.Kim, T.Nakayama, T.Kusunose, T.Nomoto, A.Hikasa, T.Sekino: J. Eur. Ceram. Soc.24 (2004) 3419. 10.1016/j.jeurceramsoc.2003.10.027Search in Google Scholar
[21] Y.Li, Z.Guo, J.Hao, S.Ren: J. Mater. Process. Technol.208 (2008) 457. 10.1016/j.jmatprotec.2008.01.009Search in Google Scholar
[22] H. ElRakayby, K.Kim: Mater. Des.99 (2016) 433. 10.1016/j.matdes.2016.03.057Search in Google Scholar
[23] A.Flodin, M.Andersson, A.Miedzinski: Met. Powder Rep.72 (2017) 107. 10.1016/j.mprp.2016.02.057Search in Google Scholar
[24] L.M.Roncery, I.Lopez-Galilea, B.Ruttert, S.Huth, W.Theisen: Mater. Des.97 (2016) 544. 10.1016/j.matdes.2016.02.051Search in Google Scholar
[25] T.Yildiz, N.Kati, A.K.Gür: J. Alloys Compd.737 (2018) 8. 10.1016/j.jallcom.2017.12.097Search in Google Scholar
[26] D.Zhang, Z.Li, L.Xie, Y.Xiao, F.Yin: Int. J. Mater. Res.106 (2015) 870. 10.3139/146.111239Search in Google Scholar
[27] D.W.Hetzner: Mater. Charact.46 (2001) 175.10.1016/S1044-5803(01)00121-8Search in Google Scholar
[28] M.Wieβner, M.Leisch, H.Emminger, A.Kulmburg: Mater. Charact.59 (2008) 937. 10.1016/j.matchar.2007.08.002Search in Google Scholar
[29] S.Huth, W.Theisen: Powder Metall.52 (2009) 90 10.1179/174329009X459593Search in Google Scholar
[30] Q.Ye, H.Zhu, L.Zhang, J.Ma, L.Zhou, P.Liu, J.Chen, G.Chen, J.Peng: J. Alloys Compd.613 (2014) 102. 10.1016/j.jallcom.2014.06.016Search in Google Scholar
[31] K.Park, H.Jang, C.Choi: J. Aerosol Sci.22 (1991) S113. 10.1016/S0021-8502(05)80047-3Search in Google Scholar
[32] L.Li, Z.Gao, A.Li, J.Yi, Y.Ge: J. Magn. Magn. Mater.464 (2018) 161. 10.1016/j.jmmm.2018.05.053Search in Google Scholar
[33] A.Rousseau, J.Partridge, Y.Gözükara, S.Gulizia, D.McCulloch: Vacuum124 (2016) 85. 10.1016/j.vacuum.2015.11.019Search in Google Scholar
[34] M.Godec, B.Š.Batič, D.Mandrino, A.Nagode, V.Leskovšek, S.D.Škapin, M.Jenko: Mater. Charact.61 (2010) 452. 10.1016/j.matchar.2010.02.003Search in Google Scholar
[35] Q.Zhang, Y.Jiang, W.Shen, H.Zhang, Y.He, N.Lin, C.T.Liu, H.Huang, X.Huang: Mater. Des.112 (2016) 469. 10.1016/j.matdes.2016.09.044Search in Google Scholar
[36] S.Gimenez, I.Iturriza: J. Mater. Process Technol.143 (2003) 555. 10.1016/S0924-0136(03)00359-5Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- The softening factor cb of commercial titanium alloy wires
- A comparative assessment of cyclic deformation behavior of SA333 Gr-6 steel at ambient and elevated temperatures
- Effects of Ni and Al on the Cu-precipitation in ferritic Fe–Cu–M (M = Ni or Al) alloy
- Effect of manganese on the microstructure and mechanical properties of magnesium alloys
- Effect of heat treatment and extrusion on wear properties of AZ91-Pr alloy
- Effect of anodization treatment on the mechanical properties and fatigue behavior of AA2017-T4 aluminum alloy Al–Cu–Mg1
- Microstructural and tribological characterization of molybdenum–molybdenum carbide structures produced by spark plasma sintering
- Investigation of indentation and dry sliding wear behaviour of Al-12.6 wt.% Si-10 wt.% TiB2 composites produced by sequential milling and pressureless sintering
- Enthalpies of mixing in ternary Ce–Cu–Sb liquid alloys
- Effect of in-situ formation of AlP on solidification of hypereutectic Al–Si alloy
- Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
- Internal electromagnetic stirring method for preparing a large-sized aluminum alloy billet
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- The softening factor cb of commercial titanium alloy wires
- A comparative assessment of cyclic deformation behavior of SA333 Gr-6 steel at ambient and elevated temperatures
- Effects of Ni and Al on the Cu-precipitation in ferritic Fe–Cu–M (M = Ni or Al) alloy
- Effect of manganese on the microstructure and mechanical properties of magnesium alloys
- Effect of heat treatment and extrusion on wear properties of AZ91-Pr alloy
- Effect of anodization treatment on the mechanical properties and fatigue behavior of AA2017-T4 aluminum alloy Al–Cu–Mg1
- Microstructural and tribological characterization of molybdenum–molybdenum carbide structures produced by spark plasma sintering
- Investigation of indentation and dry sliding wear behaviour of Al-12.6 wt.% Si-10 wt.% TiB2 composites produced by sequential milling and pressureless sintering
- Enthalpies of mixing in ternary Ce–Cu–Sb liquid alloys
- Effect of in-situ formation of AlP on solidification of hypereutectic Al–Si alloy
- Complex-shaped high speed steel with high mechanical performance fabricated by gelcasting sintering
- Internal electromagnetic stirring method for preparing a large-sized aluminum alloy billet
- DGM News
- DGM News