Startseite Wetting and sealing of the interface between silicate glass and copper
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Wetting and sealing of the interface between silicate glass and copper

  • Min Zhang , Changjun Chen und Chuangye Li
Veröffentlicht/Copyright: 30. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In order to realize reliable sealing and combining of constructional glass and copper, the effects of temperature, holding time, and roughness on their wetting properties were studied. The contact angle and drop diameter were measured by microscopy. The microstructure, element distribution and chemical composition of the reaction interface were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy to reveal the relationship between the contact angle and the reaction interface. The results show that the glass/copper contact angle of the sample tested constantly decreases with increasing temperature. If the holding temperature is increased from 980°C to 990°C, and the wetting angle is reduced from 83.22° to 55.28°. When the holding time is prolonged from 5 min to 40 min at 1000°C, the wetting angle decreases and the size of the black halo around the glass reduces. The copper surface roughness has little effect on the wetting angle. Therefore, during the actual sealing process, increasing the temperature and holding time, could effectively improve the wetting behavior of the glass and copper. The black halo formation and interfacial reaction mechanism are also discussed.


*Correspondence address, Changjun Chen, Phd, Prof. and Director, Laser Processing Research Center, School of Mechanical and Electric Engineering, Soochow University, No. 8, Jixue Road, Suzhou Jiangsu 215021, P.R. China, Tel.: 86-18913557664, E-mail:

References

[1] G.Feng, Z.Li, X.Xu, Z.Shen, Y.Yang: J. Mater. Process. Technol.254 (2018) 10810.1016/j.jmatprotec.2017.11.038Suche in Google Scholar

[2] M.Schmidt: P. IEEE86 (1998) 1575. 10.1109/5.704262Suche in Google Scholar

[3] M.Koebel, N.Hawi, J.Lu, F.Gattiker, J.Neuenschwander: Sol. Energy. Mater. Sol. Cells95 (2011) 3001. 10.1016/j.solmat.2011.06.012Suche in Google Scholar

[4] D.Briand, P.Weber, Ni.F.Rooij: Sens. Actuators. A114 (2004) 543. 10.1016/j.sna.2003.10.070Suche in Google Scholar

[5] A.Elrefaey, J.Rusch, M.Koebel: J. Mater. Process. Technol.214 (2014) 2716. 10.1016/j.jmatprotec.2014.06.006Suche in Google Scholar

[6] Z.Li, G.Feng, S.Wang, S.Feng: J. Mater. Process. Technol.32 (2016) 1111. 10.1016/j.jmst.2016.01.016Suche in Google Scholar

[7] http://www.matweb.com/search/DataSheet.aspx?MatGUID=9aebe83845c04c1db5126fada6f76f7e&ckck=1Suche in Google Scholar

[8] https://en.wikipedia.org/wiki/Soda–lime_glassSuche in Google Scholar

[9] S.Widgeon, E.Corral, M.Spilde, R.Loehman: J. Am. Ceram. Soc.92 (2009) 781. 10.1111/j.1551-2916.2008.02902.xSuche in Google Scholar

[10] I.W.Brockmann, I.P.L.Geiß, J.Klingen, B.Schröder: Adhesive Bonding: Materials, Applications and Technology, Wiley-VCH Verlag GmbH & Co. KGaA Press, Weinheim (2009).Suche in Google Scholar

[11] S.Kumar, C.S.Wu, G.K.Padhy, W.Ding: J. Manuf. Processes26 (2017) 295. 10.1016/j.jmapro.2017.02.027Suche in Google Scholar

[12] H.B.Liu, L.X.Zhang, L.Z.Wu: Mater. Sci. Eng. A49 (2008) 321. 10.1016/j.msea.2008.08.008Suche in Google Scholar

[13] P.Knapkiewicz, B.Cichy, W.Posadowski, T.Katarzyn, S.Patrycj, D.Jan: Procedia Eng.25 (2011) 1629. 10.1016/j.proeng.2011.12.403Suche in Google Scholar

[14] M.Zhang, Y.Yao, C.J.Chen, P.Kongsuwan, G.Brandal, D.K.Bian: J. Manuf. Sci. Eng.140 (2017) 011012. 10.1115/1.4037426Suche in Google Scholar

[15] M.Bachmann, A.Gumenyuk, M.Rethmeier: Phys. Proced.83 (2016) 15. 10.1016/j.phpro.2016.08.003Suche in Google Scholar

[16] M.Zhang, Y.Li, X.Wang, Y.Bao, D.Wan: Chin. J. Eng.37 (2015) 494. 10.13374/j.issn2095-9389.2015.04.014Suche in Google Scholar

[17] R.Keusseyan, J.Dilday: Electronic Components and Technology Conference, 1993. Proceedings, 43rd. Orlando, FL, USA (1993). 10.1109/ECTC.1993.346745Suche in Google Scholar

[18] T.S.Chern, H.L.Tsai: Mater. Chem. Phys.104 (2007) 472. 10.1016/j.matchemphys.2007.04.012Suche in Google Scholar

[19] C.Chanmuang, M.Naksata, T.Chairuangsri, H.Jain, C.Lyma: Mater. Sci. Eng. A474 (2008) 218. 10.1016/j.msea.2007.04.016Suche in Google Scholar

[20] D.Luo, Z.Shen: J. Alloys Compd.477 (2009) 407. 10.1016/j.jallcom.2008.10.028Suche in Google Scholar

[21] http://glassproperties.com/viscosity.Suche in Google Scholar

[22] E.Saiz, R.M.Cannon, A.P.Tomsiare: Acta Mater.48 (2000) 4449. 10.1016/S1359-6454(00)00231-7Suche in Google Scholar

[23] E.Saiz, R.M.Cannon, A.P.Tomsiare: Oil. Gas. Sci. Tech.56 (2001) 89. 10.2516/ogst:2001011Suche in Google Scholar

[24] E.Saiz, A.P.Tomsiare: Curr. Opin. Solid State Mater. Sci.9 (2005) 167. 10.1016/j.cossms.2006.04.005Suche in Google Scholar

[25] H.Ghaedi, M.Ayoub, S.Sufian, A.M.Shariff, B.Lal: J. Mol. Liq.241 (2017) 500. 10.1016/j.molliq.2017.06.024Suche in Google Scholar

[26] Y.Yu, Q.Wu, K.Zhang, B.H.Zhang: Sci. China. Phys. Mech. Astron.55 (2012) 1045. 10.1007/s11433-012-4736-3Suche in Google Scholar

[27] N.Eustathopoulos: Acta Mater.46 (1998)2319. 10.1016/S1359-6454(97)00388-1Suche in Google Scholar

[28] H.Abdoli, P.Alizadeh, K.Agersted: Ceram. Int.40 (2014) 7545. 10.1016/j.ceramint.2013.12.103Suche in Google Scholar

[29] D.Susan, J.Avyle, S.Monroe, N.Sorensen, B.McKenzie, J.Christensen, J.Michael, C.Walker: Oxid. Met.73 (2010) 311. 10.1007/s11085-009-9181-ySuche in Google Scholar

[30] R.Legtenberg, S.Bouwstra, M.Elwenspoek: J. Micromech. Microeng.1 (1991) 15710.1088/0960-1317/1/3/005Suche in Google Scholar

[31] N.Eustathopoulos: Acta Mater.46 (1998) 2319. 10.1016/S1359-6454(97)00388-1Suche in Google Scholar

[32] A.Mortensen, B.Drevet, N.Eustathopoulos: Scr. Mater.36 (1997) 645. 10.1016/S1359-6462(96)00431-9Suche in Google Scholar

[33] M.K.Loudjani, R.Cortèsb: J. Eur. Ceram. Soc.20 (2000) 1483. 10.1016/S0955-2219(00)00035-2Suche in Google Scholar

[34] M.G.Nicholas: Joining processes: introduction to brazing and diffusion bonding, Kluwer Academic Publishers, The Netherlands (1998).Suche in Google Scholar

[35] I.W.Donald: J. Mater. Sci.28 (1993) 28416. 10.1007/BF00354689Suche in Google Scholar

[36] A.M.Robinson, P.Edmondson, C.English, S.L.Perez, G.Greaves, J.A.Hinks, S.E.Donnelly, C.R.Grovenor: Scr. Mater.131 (2017) 108. 10.1016/j.scriptamat.2016.12.031Suche in Google Scholar

[37] https://www.osti.gov/biblio/6963554.Suche in Google Scholar

[38] S.Kim, C.Kim: J. Mater. Sci.27 (1992) 20612066. 10.1007/BF00541630Suche in Google Scholar

[39] I.Donald, P.Mallinson, B.Metcalfe, L.Gerrard, J.Fernie: J. Mater. Sci.46 (2011) 1975. 10.1007/s10853-010-5095-ySuche in Google Scholar

[40] T.Brien, C.Chaklader: J. Amer. Ceram. Soc.57 (1974) 329. 10.1111/j.1151-2916.1974.tb10915.xSuche in Google Scholar

[41] T.C.Wilder: Trans. AIME.236 (1966) 8.Suche in Google Scholar

[42] B.Hallstedt, D.Risold, L.Gauckler: J. Phase Equilib.15 (1994) 483. 10.1007/BF02649399Suche in Google Scholar

Received: 2017-11-04
Accepted: 2018-07-09
Published Online: 2019-01-30
Published in Print: 2019-02-12

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111723/html
Button zum nach oben scrollen