Wetting and sealing of the interface between silicate glass and copper
-
Min Zhang
, Changjun Chen und Chuangye Li
Abstract
In order to realize reliable sealing and combining of constructional glass and copper, the effects of temperature, holding time, and roughness on their wetting properties were studied. The contact angle and drop diameter were measured by microscopy. The microstructure, element distribution and chemical composition of the reaction interface were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy to reveal the relationship between the contact angle and the reaction interface. The results show that the glass/copper contact angle of the sample tested constantly decreases with increasing temperature. If the holding temperature is increased from 980°C to 990°C, and the wetting angle is reduced from 83.22° to 55.28°. When the holding time is prolonged from 5 min to 40 min at 1000°C, the wetting angle decreases and the size of the black halo around the glass reduces. The copper surface roughness has little effect on the wetting angle. Therefore, during the actual sealing process, increasing the temperature and holding time, could effectively improve the wetting behavior of the glass and copper. The black halo formation and interfacial reaction mechanism are also discussed.
References
[1] G.Feng, Z.Li, X.Xu, Z.Shen, Y.Yang: J. Mater. Process. Technol.254 (2018) 10810.1016/j.jmatprotec.2017.11.038Suche in Google Scholar
[2] M.Schmidt: P. IEEE86 (1998) 1575. 10.1109/5.704262Suche in Google Scholar
[3] M.Koebel, N.Hawi, J.Lu, F.Gattiker, J.Neuenschwander: Sol. Energy. Mater. Sol. Cells95 (2011) 3001. 10.1016/j.solmat.2011.06.012Suche in Google Scholar
[4] D.Briand, P.Weber, Ni.F.Rooij: Sens. Actuators. A114 (2004) 543. 10.1016/j.sna.2003.10.070Suche in Google Scholar
[5] A.Elrefaey, J.Rusch, M.Koebel: J. Mater. Process. Technol.214 (2014) 2716. 10.1016/j.jmatprotec.2014.06.006Suche in Google Scholar
[6] Z.Li, G.Feng, S.Wang, S.Feng: J. Mater. Process. Technol.32 (2016) 1111. 10.1016/j.jmst.2016.01.016Suche in Google Scholar
[7] http://www.matweb.com/search/DataSheet.aspx?MatGUID=9aebe83845c04c1db5126fada6f76f7e&ckck=1Suche in Google Scholar
[8] https://en.wikipedia.org/wiki/Soda–lime_glassSuche in Google Scholar
[9] S.Widgeon, E.Corral, M.Spilde, R.Loehman: J. Am. Ceram. Soc.92 (2009) 781. 10.1111/j.1551-2916.2008.02902.xSuche in Google Scholar
[10] I.W.Brockmann, I.P.L.Geiß, J.Klingen, B.Schröder: Adhesive Bonding: Materials, Applications and Technology, Wiley-VCH Verlag GmbH & Co. KGaA Press, Weinheim (2009).Suche in Google Scholar
[11] S.Kumar, C.S.Wu, G.K.Padhy, W.Ding: J. Manuf. Processes26 (2017) 295. 10.1016/j.jmapro.2017.02.027Suche in Google Scholar
[12] H.B.Liu, L.X.Zhang, L.Z.Wu: Mater. Sci. Eng. A49 (2008) 321. 10.1016/j.msea.2008.08.008Suche in Google Scholar
[13] P.Knapkiewicz, B.Cichy, W.Posadowski, T.Katarzyn, S.Patrycj, D.Jan: Procedia Eng.25 (2011) 1629. 10.1016/j.proeng.2011.12.403Suche in Google Scholar
[14] M.Zhang, Y.Yao, C.J.Chen, P.Kongsuwan, G.Brandal, D.K.Bian: J. Manuf. Sci. Eng.140 (2017) 011012. 10.1115/1.4037426Suche in Google Scholar
[15] M.Bachmann, A.Gumenyuk, M.Rethmeier: Phys. Proced.83 (2016) 15. 10.1016/j.phpro.2016.08.003Suche in Google Scholar
[16] M.Zhang, Y.Li, X.Wang, Y.Bao, D.Wan: Chin. J. Eng.37 (2015) 494. 10.13374/j.issn2095-9389.2015.04.014Suche in Google Scholar
[17] R.Keusseyan, J.Dilday: Electronic Components and Technology Conference, 1993. Proceedings, 43rd. Orlando, FL, USA (1993). 10.1109/ECTC.1993.346745Suche in Google Scholar
[18] T.S.Chern, H.L.Tsai: Mater. Chem. Phys.104 (2007) 472. 10.1016/j.matchemphys.2007.04.012Suche in Google Scholar
[19] C.Chanmuang, M.Naksata, T.Chairuangsri, H.Jain, C.Lyma: Mater. Sci. Eng. A474 (2008) 218. 10.1016/j.msea.2007.04.016Suche in Google Scholar
[20] D.Luo, Z.Shen: J. Alloys Compd.477 (2009) 407. 10.1016/j.jallcom.2008.10.028Suche in Google Scholar
[21] http://glassproperties.com/viscosity.Suche in Google Scholar
[22] E.Saiz, R.M.Cannon, A.P.Tomsiare: Acta Mater.48 (2000) 4449. 10.1016/S1359-6454(00)00231-7Suche in Google Scholar
[23] E.Saiz, R.M.Cannon, A.P.Tomsiare: Oil. Gas. Sci. Tech.56 (2001) 89. 10.2516/ogst:2001011Suche in Google Scholar
[24] E.Saiz, A.P.Tomsiare: Curr. Opin. Solid State Mater. Sci.9 (2005) 167. 10.1016/j.cossms.2006.04.005Suche in Google Scholar
[25] H.Ghaedi, M.Ayoub, S.Sufian, A.M.Shariff, B.Lal: J. Mol. Liq.241 (2017) 500. 10.1016/j.molliq.2017.06.024Suche in Google Scholar
[26] Y.Yu, Q.Wu, K.Zhang, B.H.Zhang: Sci. China. Phys. Mech. Astron.55 (2012) 1045. 10.1007/s11433-012-4736-3Suche in Google Scholar
[27] N.Eustathopoulos: Acta Mater.46 (1998)2319. 10.1016/S1359-6454(97)00388-1Suche in Google Scholar
[28] H.Abdoli, P.Alizadeh, K.Agersted: Ceram. Int.40 (2014) 7545. 10.1016/j.ceramint.2013.12.103Suche in Google Scholar
[29] D.Susan, J.Avyle, S.Monroe, N.Sorensen, B.McKenzie, J.Christensen, J.Michael, C.Walker: Oxid. Met.73 (2010) 311. 10.1007/s11085-009-9181-ySuche in Google Scholar
[30] R.Legtenberg, S.Bouwstra, M.Elwenspoek: J. Micromech. Microeng.1 (1991) 15710.1088/0960-1317/1/3/005Suche in Google Scholar
[31] N.Eustathopoulos: Acta Mater.46 (1998) 2319. 10.1016/S1359-6454(97)00388-1Suche in Google Scholar
[32] A.Mortensen, B.Drevet, N.Eustathopoulos: Scr. Mater.36 (1997) 645. 10.1016/S1359-6462(96)00431-9Suche in Google Scholar
[33] M.K.Loudjani, R.Cortèsb: J. Eur. Ceram. Soc.20 (2000) 1483. 10.1016/S0955-2219(00)00035-2Suche in Google Scholar
[34] M.G.Nicholas: Joining processes: introduction to brazing and diffusion bonding, Kluwer Academic Publishers, The Netherlands (1998).Suche in Google Scholar
[35] I.W.Donald: J. Mater. Sci.28 (1993) 28416. 10.1007/BF00354689Suche in Google Scholar
[36] A.M.Robinson, P.Edmondson, C.English, S.L.Perez, G.Greaves, J.A.Hinks, S.E.Donnelly, C.R.Grovenor: Scr. Mater.131 (2017) 108. 10.1016/j.scriptamat.2016.12.031Suche in Google Scholar
[37] https://www.osti.gov/biblio/6963554.Suche in Google Scholar
[38] S.Kim, C.Kim: J. Mater. Sci.27 (1992) 2061–2066. 10.1007/BF00541630Suche in Google Scholar
[39] I.Donald, P.Mallinson, B.Metcalfe, L.Gerrard, J.Fernie: J. Mater. Sci.46 (2011) 1975. 10.1007/s10853-010-5095-ySuche in Google Scholar
[40] T.Brien, C.Chaklader: J. Amer. Ceram. Soc.57 (1974) 329. 10.1111/j.1151-2916.1974.tb10915.xSuche in Google Scholar
[41] T.C.Wilder: Trans. AIME.236 (1966) 8.Suche in Google Scholar
[42] B.Hallstedt, D.Risold, L.Gauckler: J. Phase Equilib.15 (1994) 483. 10.1007/BF02649399Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Nanoindentation analysis methods examined with finite element simulations
- Experimental investigation of gas/matte/spinel equilibria in the Cu–Fe–O–S system at 1250°C and P(SO2) = 0.25 atm
- Replacing martensite with nanobainite in moderately alloyed carburised steel for better wear performance
- Microstructure, hardness and wear behaviour of NbC reinforced AA7075 matrix composites fabricated by friction stir processing
- Microstructure, mechanical, and high-stress abrasive wear behaviour of as-cast and heat-treated Al–Si–SiCp composite
- Mechanical and morphological properties of bamboo mesoparticle/nylon 6 composites
- Particle and microstructural characteristics in the coarse-grained heat-affected zone of Al–Ti–Ca complex deoxidized steels
- Corrosion behavior of stir-cast Al–TiB2 metal matrix composites
- Correlation between anodization variables and surface properties of titania nanotube arrays for dye-sensitized solar cells
- Wetting and sealing of the interface between silicate glass and copper
- Short Communications
- Investigation of MWCNTs addition on mechanical properties of cordierite glass-ceramic composites
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Nanoindentation analysis methods examined with finite element simulations
- Experimental investigation of gas/matte/spinel equilibria in the Cu–Fe–O–S system at 1250°C and P(SO2) = 0.25 atm
- Replacing martensite with nanobainite in moderately alloyed carburised steel for better wear performance
- Microstructure, hardness and wear behaviour of NbC reinforced AA7075 matrix composites fabricated by friction stir processing
- Microstructure, mechanical, and high-stress abrasive wear behaviour of as-cast and heat-treated Al–Si–SiCp composite
- Mechanical and morphological properties of bamboo mesoparticle/nylon 6 composites
- Particle and microstructural characteristics in the coarse-grained heat-affected zone of Al–Ti–Ca complex deoxidized steels
- Corrosion behavior of stir-cast Al–TiB2 metal matrix composites
- Correlation between anodization variables and surface properties of titania nanotube arrays for dye-sensitized solar cells
- Wetting and sealing of the interface between silicate glass and copper
- Short Communications
- Investigation of MWCNTs addition on mechanical properties of cordierite glass-ceramic composites
- DGM News
- DGM News