Wetting and sealing of the interface between silicate glass and copper
- 
            
            
        Min Zhang
        
Abstract
In order to realize reliable sealing and combining of constructional glass and copper, the effects of temperature, holding time, and roughness on their wetting properties were studied. The contact angle and drop diameter were measured by microscopy. The microstructure, element distribution and chemical composition of the reaction interface were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy to reveal the relationship between the contact angle and the reaction interface. The results show that the glass/copper contact angle of the sample tested constantly decreases with increasing temperature. If the holding temperature is increased from 980°C to 990°C, and the wetting angle is reduced from 83.22° to 55.28°. When the holding time is prolonged from 5 min to 40 min at 1000°C, the wetting angle decreases and the size of the black halo around the glass reduces. The copper surface roughness has little effect on the wetting angle. Therefore, during the actual sealing process, increasing the temperature and holding time, could effectively improve the wetting behavior of the glass and copper. The black halo formation and interfacial reaction mechanism are also discussed.
References
[1] G.Feng, Z.Li, X.Xu, Z.Shen, Y.Yang: J. Mater. Process. Technol.254 (2018) 10810.1016/j.jmatprotec.2017.11.038Search in Google Scholar
[2] M.Schmidt: P. IEEE86 (1998) 1575. 10.1109/5.704262Search in Google Scholar
[3] M.Koebel, N.Hawi, J.Lu, F.Gattiker, J.Neuenschwander: Sol. Energy. Mater. Sol. Cells95 (2011) 3001. 10.1016/j.solmat.2011.06.012Search in Google Scholar
[4] D.Briand, P.Weber, Ni.F.Rooij: Sens. Actuators. A114 (2004) 543. 10.1016/j.sna.2003.10.070Search in Google Scholar
[5] A.Elrefaey, J.Rusch, M.Koebel: J. Mater. Process. Technol.214 (2014) 2716. 10.1016/j.jmatprotec.2014.06.006Search in Google Scholar
[6] Z.Li, G.Feng, S.Wang, S.Feng: J. Mater. Process. Technol.32 (2016) 1111. 10.1016/j.jmst.2016.01.016Search in Google Scholar
[7] http://www.matweb.com/search/DataSheet.aspx?MatGUID=9aebe83845c04c1db5126fada6f76f7e&ckck=1Search in Google Scholar
[8] https://en.wikipedia.org/wiki/Soda–lime_glassSearch in Google Scholar
[9] S.Widgeon, E.Corral, M.Spilde, R.Loehman: J. Am. Ceram. Soc.92 (2009) 781. 10.1111/j.1551-2916.2008.02902.xSearch in Google Scholar
[10] I.W.Brockmann, I.P.L.Geiß, J.Klingen, B.Schröder: Adhesive Bonding: Materials, Applications and Technology, Wiley-VCH Verlag GmbH & Co. KGaA Press, Weinheim (2009).Search in Google Scholar
[11] S.Kumar, C.S.Wu, G.K.Padhy, W.Ding: J. Manuf. Processes26 (2017) 295. 10.1016/j.jmapro.2017.02.027Search in Google Scholar
[12] H.B.Liu, L.X.Zhang, L.Z.Wu: Mater. Sci. Eng. A49 (2008) 321. 10.1016/j.msea.2008.08.008Search in Google Scholar
[13] P.Knapkiewicz, B.Cichy, W.Posadowski, T.Katarzyn, S.Patrycj, D.Jan: Procedia Eng.25 (2011) 1629. 10.1016/j.proeng.2011.12.403Search in Google Scholar
[14] M.Zhang, Y.Yao, C.J.Chen, P.Kongsuwan, G.Brandal, D.K.Bian: J. Manuf. Sci. Eng.140 (2017) 011012. 10.1115/1.4037426Search in Google Scholar
[15] M.Bachmann, A.Gumenyuk, M.Rethmeier: Phys. Proced.83 (2016) 15. 10.1016/j.phpro.2016.08.003Search in Google Scholar
[16] M.Zhang, Y.Li, X.Wang, Y.Bao, D.Wan: Chin. J. Eng.37 (2015) 494. 10.13374/j.issn2095-9389.2015.04.014Search in Google Scholar
[17] R.Keusseyan, J.Dilday: Electronic Components and Technology Conference, 1993. Proceedings, 43rd. Orlando, FL, USA (1993). 10.1109/ECTC.1993.346745Search in Google Scholar
[18] T.S.Chern, H.L.Tsai: Mater. Chem. Phys.104 (2007) 472. 10.1016/j.matchemphys.2007.04.012Search in Google Scholar
[19] C.Chanmuang, M.Naksata, T.Chairuangsri, H.Jain, C.Lyma: Mater. Sci. Eng. A474 (2008) 218. 10.1016/j.msea.2007.04.016Search in Google Scholar
[20] D.Luo, Z.Shen: J. Alloys Compd.477 (2009) 407. 10.1016/j.jallcom.2008.10.028Search in Google Scholar
[21] http://glassproperties.com/viscosity.Search in Google Scholar
[22] E.Saiz, R.M.Cannon, A.P.Tomsiare: Acta Mater.48 (2000) 4449. 10.1016/S1359-6454(00)00231-7Search in Google Scholar
[23] E.Saiz, R.M.Cannon, A.P.Tomsiare: Oil. Gas. Sci. Tech.56 (2001) 89. 10.2516/ogst:2001011Search in Google Scholar
[24] E.Saiz, A.P.Tomsiare: Curr. Opin. Solid State Mater. Sci.9 (2005) 167. 10.1016/j.cossms.2006.04.005Search in Google Scholar
[25] H.Ghaedi, M.Ayoub, S.Sufian, A.M.Shariff, B.Lal: J. Mol. Liq.241 (2017) 500. 10.1016/j.molliq.2017.06.024Search in Google Scholar
[26] Y.Yu, Q.Wu, K.Zhang, B.H.Zhang: Sci. China. Phys. Mech. Astron.55 (2012) 1045. 10.1007/s11433-012-4736-3Search in Google Scholar
[27] N.Eustathopoulos: Acta Mater.46 (1998)2319. 10.1016/S1359-6454(97)00388-1Search in Google Scholar
[28] H.Abdoli, P.Alizadeh, K.Agersted: Ceram. Int.40 (2014) 7545. 10.1016/j.ceramint.2013.12.103Search in Google Scholar
[29] D.Susan, J.Avyle, S.Monroe, N.Sorensen, B.McKenzie, J.Christensen, J.Michael, C.Walker: Oxid. Met.73 (2010) 311. 10.1007/s11085-009-9181-ySearch in Google Scholar
[30] R.Legtenberg, S.Bouwstra, M.Elwenspoek: J. Micromech. Microeng.1 (1991) 15710.1088/0960-1317/1/3/005Search in Google Scholar
[31] N.Eustathopoulos: Acta Mater.46 (1998) 2319. 10.1016/S1359-6454(97)00388-1Search in Google Scholar
[32] A.Mortensen, B.Drevet, N.Eustathopoulos: Scr. Mater.36 (1997) 645. 10.1016/S1359-6462(96)00431-9Search in Google Scholar
[33] M.K.Loudjani, R.Cortèsb: J. Eur. Ceram. Soc.20 (2000) 1483. 10.1016/S0955-2219(00)00035-2Search in Google Scholar
[34] M.G.Nicholas: Joining processes: introduction to brazing and diffusion bonding, Kluwer Academic Publishers, The Netherlands (1998).Search in Google Scholar
[35] I.W.Donald: J. Mater. Sci.28 (1993) 28416. 10.1007/BF00354689Search in Google Scholar
[36] A.M.Robinson, P.Edmondson, C.English, S.L.Perez, G.Greaves, J.A.Hinks, S.E.Donnelly, C.R.Grovenor: Scr. Mater.131 (2017) 108. 10.1016/j.scriptamat.2016.12.031Search in Google Scholar
[37] https://www.osti.gov/biblio/6963554.Search in Google Scholar
[38] S.Kim, C.Kim: J. Mater. Sci.27 (1992) 2061–2066. 10.1007/BF00541630Search in Google Scholar
[39] I.Donald, P.Mallinson, B.Metcalfe, L.Gerrard, J.Fernie: J. Mater. Sci.46 (2011) 1975. 10.1007/s10853-010-5095-ySearch in Google Scholar
[40] T.Brien, C.Chaklader: J. Amer. Ceram. Soc.57 (1974) 329. 10.1111/j.1151-2916.1974.tb10915.xSearch in Google Scholar
[41] T.C.Wilder: Trans. AIME.236 (1966) 8.Search in Google Scholar
[42] B.Hallstedt, D.Risold, L.Gauckler: J. Phase Equilib.15 (1994) 483. 10.1007/BF02649399Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Nanoindentation analysis methods examined with finite element simulations
- Experimental investigation of gas/matte/spinel equilibria in the Cu–Fe–O–S system at 1250°C and P(SO2) = 0.25 atm
- Replacing martensite with nanobainite in moderately alloyed carburised steel for better wear performance
- Microstructure, hardness and wear behaviour of NbC reinforced AA7075 matrix composites fabricated by friction stir processing
- Microstructure, mechanical, and high-stress abrasive wear behaviour of as-cast and heat-treated Al–Si–SiCp composite
- Mechanical and morphological properties of bamboo mesoparticle/nylon 6 composites
- Particle and microstructural characteristics in the coarse-grained heat-affected zone of Al–Ti–Ca complex deoxidized steels
- Corrosion behavior of stir-cast Al–TiB2 metal matrix composites
- Correlation between anodization variables and surface properties of titania nanotube arrays for dye-sensitized solar cells
- Wetting and sealing of the interface between silicate glass and copper
- Short Communications
- Investigation of MWCNTs addition on mechanical properties of cordierite glass-ceramic composites
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Nanoindentation analysis methods examined with finite element simulations
- Experimental investigation of gas/matte/spinel equilibria in the Cu–Fe–O–S system at 1250°C and P(SO2) = 0.25 atm
- Replacing martensite with nanobainite in moderately alloyed carburised steel for better wear performance
- Microstructure, hardness and wear behaviour of NbC reinforced AA7075 matrix composites fabricated by friction stir processing
- Microstructure, mechanical, and high-stress abrasive wear behaviour of as-cast and heat-treated Al–Si–SiCp composite
- Mechanical and morphological properties of bamboo mesoparticle/nylon 6 composites
- Particle and microstructural characteristics in the coarse-grained heat-affected zone of Al–Ti–Ca complex deoxidized steels
- Corrosion behavior of stir-cast Al–TiB2 metal matrix composites
- Correlation between anodization variables and surface properties of titania nanotube arrays for dye-sensitized solar cells
- Wetting and sealing of the interface between silicate glass and copper
- Short Communications
- Investigation of MWCNTs addition on mechanical properties of cordierite glass-ceramic composites
- DGM News
- DGM News