Startseite The effect of the cooling rate on the course of oxidation of gamma titanium aluminide alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The effect of the cooling rate on the course of oxidation of gamma titanium aluminide alloy

  • Joanna Małecka
Veröffentlicht/Copyright: 30. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents the results of an investigation on the oxidation damage mechanisms of the intermetallic alloy Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni. The oxidation was carried out in air at two temperatures: 900 °C and 925 °C. The effects of temperature and cooling rate were taken into consideration. It is also determined that the mass gain of the oxidized alloy is slightly higher when cooling is performed at a higher rate.


*Correspondence address, Joanna Małecka, Opole University of Technology Faculty of Mechanical Engineering, Mikołajczyka 5 Street, 45-271 Opole, Poland, Tel.: +48 774498466, Fax: +48774499927, E-mail:

References

[1] H.Clemens, H.Kestler: Adv. Eng. Mater.2/9 (2000) 551. 10.1002/1527-2648(200009)2:9%3C551::AID-ADEM551%3E3.0.CO;2-USuche in Google Scholar

[2] E.A.Loria: Intermet.8 (2000) 13391345. 10.1016/S0966-9795(00)00073-XSuche in Google Scholar

[3] F.Appel, M.Oehring, R.Wagner: Intermet.8 (2000) 1283. 10.1016/S0966-9795(00)00036-4Suche in Google Scholar

[4] ASMHandbook, vol.3. Alloy Phase Diagrams, Metal treatment, Structure and Joining Collection. Section: Binary Alloy Phase Diagrams, Standard Content, (1998).Suche in Google Scholar

[5] P.KOFSTAD: J. Phys. Chem. Solids23 (1962) 1579. 10.1016/0022-3697(62)90240-8Suche in Google Scholar

[6] A.E.Jenkins: J. Inst. Met.84 (1955) 19.Suche in Google Scholar

[7] S.Anderson, A.D.Wedsley: Nature211 (1966) 581. 10.1038/211581a0Suche in Google Scholar

[8] M.Yoshihara, Y.W.Kim: Intermet.13 (2005) 952. 10.1016/j.intermet.2004.12.007Suche in Google Scholar

[9] Y.Shen, X.Ding, F.Wang: J. Mater. Sci.39 (2004) 6583. 10.1023/B:JMSC.0000044899.40687.a6Suche in Google Scholar

[10] R.J.Hanraham, D.P.Butt: Oxid. Met.47 (1997) 317. 10.1007/BF01668517Suche in Google Scholar

[11] S.K.Varma, A.Chan, B.N.Mahapatra: Oxid. Met.55 (2001) 423. 10.1023/A:1010351613733Suche in Google Scholar

[12] J.M.Rakowski, F.S.Pettit and G.H.Meier: Scripta Mater.35/12 (1996) 1417. 10.1016/S1359-6462(96)00315-6Suche in Google Scholar

[13] C.E.Lowell, D.L.Deadmore: Oxid. Met.14 (1980) 325. 10.1007/BF00603788Suche in Google Scholar

[14] M.Yoshihara, Y.W.Kim: in Gamma Titanium Aluminides (2003) 559.Suche in Google Scholar

[15] H.Clemens, F.Appel, R.Bartels, H.Baur, H.Gerling, V.Güther, H.Kestler: in Ti-2003 Science and TechnologyIV (2004) 2123.Suche in Google Scholar

[16] P.Kofstad, P.B.Anderson, O.J.Krudtaa: J. Less-Common Met.3 (1961) 89. 10.1016/0022-5088(61)90001-7Suche in Google Scholar

[17] A.Evans, A.Rana: Acta Mater.28 (1980) 129. 10.1016/0001-6160(80)90062-0Suche in Google Scholar

[18] F.N.Rhines, J.S.Wolf: Metal. Trans.1/6 (1970) 1701. 10.1007/BF02642020Suche in Google Scholar

[19] D.Clarke: Acta Mater.51 (2003) 1393. 10.1016/S1359-6454(02)00532-3Suche in Google Scholar

[20] J.Allpress, A.Wadsley: J. Solid State Chem.1 (1969) 28. 10.1016/0022-4596(69)90005-XSuche in Google Scholar

Received: 2018-02-27
Accepted: 2018-06-01
Published Online: 2018-10-30
Published in Print: 2018-11-12

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111705/pdf?lang=de
Button zum nach oben scrollen