Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO
-
Phan Dinh Gio
, Huynh Quang Viet und Le Dai Vuong
Abstract
In this study, 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 (KNLN) + xwt.%CuO piezoelectric ceramics, where x = 0.0, 0.1, 0.2, 0.25, and 0.30, have been successfully fabricated using the conventional solid-state reaction method. The effect of CuO on the sintering behavior, structure, microstructure, and electrical properties of KNLN ceramics was studied. The addition of CuO reduced the sintering temperature of the ceramics from 1 050 °C to 950 °C. The experimental results showed that with CuO doping, the KNLN ceramics can be well sintered at a low temperature and show a dense, pure perovskite structure. At a sintering temperature of 950 °C and CuO content of 0.25 wt.%, the best physical properties of the ceramics, such as density (ρ), 4.14 g cm−3; electromechanical coupling factors (kp), 0.33 and (kt), 0.43; dielectric constant (∊), 349; dielectric loss (tanδ), 0.008; mechanical quality factor (Qm), 133; and piezoelectric constant (d33), 130 pC N−1, were obtained.
References
[1] L.D.Vuong, P.D.Gio, N.T.ThoT.V.Chuong: Indian J. Eng. Mater. Sci.20 (2013) 555–560.Suche in Google Scholar
[2] L.D.Vuong, N.T.Tho: Int. J. Mater. Res.108 (2017) 222–227. 10.3139/146.111465Suche in Google Scholar
[3] L.D.Vuong, P.D.Gio: Journal of Modern Physics5 (2014) 1258–1263. 10.4236/jmp.2014.514126Suche in Google Scholar
[4] L.D.Vuong, N.Truong-Tho: J. Electron. Mater.46 (2017) 6395–6402. 10.1007/s11664-017-5665-8Suche in Google Scholar
[5] P.D.Gio, N.V.D.Hong, L.D.Vuong: Advanced Porous Materials3 (2015) 29–32. 10.1166/apm.2015.1093Suche in Google Scholar
[6] H.E.Mgbemere, M.Hinterstein, G.A.Schneider: J. Appl. Crystallography44 (2011) 1080–1089. 10.1107/S0021889811027701Suche in Google Scholar
[7] P.Panda: J. Mater. Sci.44 (2009) 5049–5062. 10.1007/s10853-009-3643-0Suche in Google Scholar
[8] G.A.Smolensky: Sov. Phys.-Solid State2 (1961) 2651–2654.Suche in Google Scholar
[9] E.Subbarao: J. Am. Ceram. Soc.45 (1962) 166–169. 10.1111/j.1151-2916.1962.tb11113.xSuche in Google Scholar
[10] T.Takeuchi, T.Tani, Y.Saito: Jpn. J. Appl. Phys.38 (1999) 5553. 10.1109/ULTSYM.2008.0347Suche in Google Scholar
[11] T.Huang, D.Q.Xiao, W.F.Liang, J.G.Wu, Z.Wang, J.G.Zhu: Ferroelectrics458 (2014) 37–42. 10.1080/00150193.2013.849978Suche in Google Scholar
[12] S.Zhang, R.Xia, T.R.Shrout, G.Zang, J.Wang: J. Appl. Phys.100 (2006) 104108. 10.1063/1.2382348Suche in Google Scholar
[13] L.Egerton, D.M.Dillon: J. Am. Ceram. Soc.42 (1959) 438–442. 10.1111/j.1151_2916.1959.tb12971.xSuche in Google Scholar
[14] F.Fu, J.Zhai, Z.Xu, B.Shen, X.Yao: Bull. Mater. Sci.37 (2014) 779–787. 10.1007/s12034-014-0006-5Suche in Google Scholar
[15] Y.Guo, K.-i.Kakimoto, H.Ohsato: Appl. Phys. Lett.85 (2004) 4121–4123. 10.1063/1.1813636Suche in Google Scholar
[16] K.Wang and J.-F.Li: J. Adv. Ceram.1 (2012) 24–37. 10.1007/s40145-012-0003-3Suche in Google Scholar
[17] K.Kato, K.-i.Kakimoto, K.Hatano, K.Kobayashi, Y.Doshida: J. Ceram. Soc. Jap.122 (2014) 460–463. 10.2109/jcersj2.122.P6-1Suche in Google Scholar
[18] P.D.Gio, N.T.K.Lien: Ind. J. Sci. Res. and Tech.3 (2015) 48–53.Suche in Google Scholar
[19] S.H.Park, C.W.Ahn, S.Nahm, J.S.Song: Jpn. J. Appl. Phys.43 (2004) L1072. 10.1143/JJAP.43.L1072Suche in Google Scholar
[20] N.B.Do, H.D.Jang, I.Hong, H.S.Han, D.T.Le, W.P.Tai, J.S.Lee: Ceram. Inter.38 (2012) S359–S362. 10.1016/j.ceramint.2011.05.012Suche in Google Scholar
[21] P.D.Gio, L.D.Vuong, H.T.T.Hoa: J. Mater. Sci. and Chem. Eng.2 (2014) 20–27. 10.4236/msce.2014.211004Suche in Google Scholar
[22] J.H.Kim, D.H.Kim, I.T.Seo, J.Hur, J.H.Lee, B.Y.Kim, S.Nahm: Sensors and Actuators A: Physical234 (2015) 9–16. 10.1016/j.sna.2015.08.015Suche in Google Scholar
[23] I.Y.Kang, I.T.Seo, Y.J.Cha, J.H.Choi, S.Nahm, T.H.Sung, J.H.Paik: J. Eur. Ceram. Soc.32 (2012) 2381–2387. 10.1016/j.jeurceramsoc.2012.01.030Suche in Google Scholar
[24] M.Matsubara, K.Kikuta, S.Hirano: J. Appl. Phys.97 (2005) 114105. 10.1063/1.1926396Suche in Google Scholar
[25] D.Wan, Y.Yang, Q.Li, K.Zhu, Ultrasonics Symposium, (2008). IEEE. 1429–1432. 10.1109/ULTSYM.2008.0347ppSuche in Google Scholar
[26] H.Y.Park, J.Y.Choi, M.K.Choi, K.H.Cho, S.Nahm, H.G.Lee, H.W.Kang: J. Amer. Ceram. Soc.91 (2008) 2374–2377. 10.1111/j.1551-2916.2008.02408.xSuche in Google Scholar
[27] Y.Zhao, Y.Zhao, R.Huang, R.Liu, H.Zhou: J. Eur. Ceram. Soc.31 (2011) 1939–1944. 10.1016/j.jeurceramsoc.2011.04.018Suche in Google Scholar
[28] I.T.Seo, K.H.Cho, H.Y.Park, S.J.Park, M.K.Choi, S.Nahm, H.G.Lee, H.W.Kang, H.J.Lee: J. Amer. Ceram. Soc.91 (2008) 3955–3960. 10.1111/j.1551-2916.2008.02767.xSuche in Google Scholar
[29] G.Ray, N.Sinha, B.Kumar: Mater. Chem. and Phys.142 (2013) 619–625. 10.1016/j.matchemphys.2013.08.006Suche in Google Scholar
[30] E.Li, H.Kakemoto, S.Wada, T.Tsurumi: J. Amer. Ceram. Soc.90 (2007) 1787–1791. 10.1111/j.1551-2916.2006.01465.xSuche in Google Scholar
[31] F.Azough, M.Wegrzyn, R.Freer, S.Sharma, D.Hall: J. Eur. Ceram. Soc.31 (2011) 569–576. 10.1016/j.jeurceramsoc.2010.10.033Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- An artificial intelligence paradigm in heuristic search of tensile behaviour of titanium alloys
- The effect of the cooling rate on the course of oxidation of gamma titanium aluminide alloy
- Physical and electrochemical characteristics of low pressure cold sprayed aluminium composite coating on magnesium substrate
- The effect of Al2O3 reinforcement particles on the corrosion behavior of Al(Zn) solid solution matrix
- Effect of Zr content on the existence form of Zr and as-cast structure of high purity commercial aluminium
- Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance
- Structural evolution and formation mechanism of LiNi0.6Co0.2Mn0.2O2 during high-temperature solid-state synthesis
- Review
- Wear behaviour of Mg alloys and their composites – a review
- Short Communications
- Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- An artificial intelligence paradigm in heuristic search of tensile behaviour of titanium alloys
- The effect of the cooling rate on the course of oxidation of gamma titanium aluminide alloy
- Physical and electrochemical characteristics of low pressure cold sprayed aluminium composite coating on magnesium substrate
- The effect of Al2O3 reinforcement particles on the corrosion behavior of Al(Zn) solid solution matrix
- Effect of Zr content on the existence form of Zr and as-cast structure of high purity commercial aluminium
- Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance
- Structural evolution and formation mechanism of LiNi0.6Co0.2Mn0.2O2 during high-temperature solid-state synthesis
- Review
- Wear behaviour of Mg alloys and their composites – a review
- Short Communications
- Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO
- DGM News
- DGM News