Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance
-
Yong Zhang
, Feifei Lin , Tian Wei , Fanglv Qiu , Yue Ma und Lizhai Pei
Abstract
Barium bismuthate microrods were synthesized by a simple ethylenediamine-assisted hydrothermal route using barium acetate and sodium bismuthate as the source materials. The X-ray diffraction pattern shows that the barium bismuthate microrods are composed of monoclinic BaBiO2.5 phase. Scanning electron microscopy images show that the length and diameter of the barium bismuthate microrods are about 10–20 μm and 500 nm–1.5 μm, respectively. The formation and growth of the barium bismuthate microrods are closely related to the temperature, processing duration and ethylenediamine concentration. The solid UV–vis diffuse reflectance spectrum shows that the band gap of the barium bismuthate microrods is 1.42 eV which has strong absorption ability in the visible light region. The phtocatalytic activity of the barium bismuthate microrods has been evaluated by the photocatalytic removal of gentian violet under natural solar light irradiation in aqueous solution. Gentian violet with a concentration of 10 mg · L−1 can be totally removed by 10 mg barium bismuthate microrods in 10 mL aqueous solution.
References
[1] S.Shabbir, M.Faheem, Y.H.Wu: J. Clean. Prod.170 (2018) 425. 10.1016/j.jclepro.2017.09.085Suche in Google Scholar
[2] F.Shojaeipoor, B.Masoumi, B.H.Banakar, J.Rastegar: Chin. J. Chem. Eng.25 (2017) 1294. 10.1016/j.cjche.2016.09.003Suche in Google Scholar
[3] L.Aref, A.H.Navarchian, D.Dadkhah: J. Polym. Environ.25 (2017) 628. 10.1007/s10924-016-0842-zSuche in Google Scholar
[4] F.A.Pavan, E.S.Camacho, E.C.Lima, G.L.Dotto, V.T.A.Branco, S.L.P.Dias: J. Environ. Chem. Eng.2 (2014) 230. 10.1016/j.jece.2013.12.017Suche in Google Scholar
[5] E.Hu, S.Shang, X.M.Tao, S.Jiang, K.I.Chiu: J. Clean. Prod.137 (2016) 1055. 10.1016/j.jclepro.2016.07.194Suche in Google Scholar
[6] G.K.Parshetti, S.G.Parshetti, A.A.Telke, D.C.Kalyani, R.A.Doong, S.P.Govindwar: J. Environ. Sci.23 (2011) 1384. 10.1016/S1001-0742(10)60547-5Suche in Google Scholar PubMed
[7] Y.Q.Zhang, X.C.Wei, J.J.Long: J. Clean. Prod.133 (2016) 746. 10.1016/j.jclepro.2016.05.187Suche in Google Scholar
[8] V.K.Gupta, R.Jain, A.Nayak, S.Agarwal, M.Shrivastava: Mat. Sci. Eng. C31 (2011) 1062. 10.1016/j.msec.2011.03.006Suche in Google Scholar
[9] J.Y.Chen, J.W.Feng, S.S.Lu, Z.J.Shen, Y.L.Du, L.Peng, P.Nian, S.J.Yuan, A.Y.Zhang: Sep. Purif. Technol.191 (2018) 75. 10.1016/j.seppur.2017.09.016Suche in Google Scholar
[10] H.Benhebal, M.Chaib, M.Crine, A.Leonard, S.D.Lambert: Chiang Mai J. Sci.43 (2016) 585. http://hdl.handle.net/2268/183963Suche in Google Scholar
[11] N.Lin, L.Z.Pei, T.Wei, H.Y.Yu: Cryst. Res. Technol.50 (2015) 255. 10.1002/crat.201400461Suche in Google Scholar
[12] C.Pan, J.Xu, Y.Chen, Y.Zhu: Appl. Catal. B: Environ.115–116 (2012) 314. 10.1016/j.apcatb.2011.12.030Suche in Google Scholar
[13] J.Long, S.Wang, H.Chang, B.Zhao, B.Liu, Y.Zhou, W.Wei, X.Wang, L.Huang, W.Huang: Small10 (2014) 2791. PMid:24664483; 10.1002/smll.201302950Suche in Google Scholar PubMed
[14] P.Zhang, J.Hu, J.Li: RSC Adv.1 (2011) 1072. 10.1039/C1RA00188DSuche in Google Scholar
[15] L.Z.Pei, T.Wei, N.Lin, H.Y.Yu: Int. J. Mater. Sci.107 (2016) 477. 10.3139/146.111364Suche in Google Scholar
[16] K.E.Toghill, R.G.Compton: Electroanal.22 (2010) 1947. 10.1002/elan.201000072Suche in Google Scholar
[17] B.Rasche, W.V.Broek, M.Ruck: Chem. Mater.28 (2016) 665. 10.1021/acs.chemmater.5b04496Suche in Google Scholar
[18] L.Z.Pei, F.F.Lin, F.L.Qiu, W.L.Wang, Y.Zhang, C.G.Fan: Mater. Res. Express4 (2017) 075047. 10.1088/2053-1591/aa7e04Suche in Google Scholar
[19] W.Wei, H.C.Jiang, Z.Zheng, Q.Q.Zhao, Q.Y.Wu, J.H.Zhan: Mater. Res. Bull.48 (2013) 1352. 10.1016/j.materresbull.2012.11.070Suche in Google Scholar
[20] L.W.Lin, Y.H.Tang, C.S.Chen, H.F.Xu: CrystEngComm.12 (2010) 2975. 10.1039/b927384kSuche in Google Scholar
[21] L.W.Lin, Y.H.Tang, C.S.Chen: Nanotechnology20 (2009) 175601. 10.1088/0957-4484/20/17/175601Suche in Google Scholar PubMed
[22] X.Y.Li, L.P.Wang, W.D.Shi, C.J.Song, D.B.Xu, J.J.Liu: RSC Adv.5 (2015) 66940. 10.1039/C5RA10709ASuche in Google Scholar
[23] L.W.Lin, X.Y.Sun, Y.Jiang, Y.H.He: Nanoscale5 (2013) 12518. 10.1039/c3nr04185aSuche in Google Scholar PubMed
[24] M.Saiduzzaman, S.Yanagida, T.Takei, C.Moriyoshi, Y.Kuroiwa, N.Kumada: ChemistrySelect2 (2017) 4843. 10.1002/slct.201700973Suche in Google Scholar
[25] N.Kumada: J. Ceram. Soc.121 (2013) 135. 10.2109/jcersj2.121.135Suche in Google Scholar
[26] N.Kumada, M.H.K.Rubel, A.Miura, T.Takei: J. Ceram. Soc.122 (2014) 307. 10.2019/jcersj2.122.307Suche in Google Scholar
[27] T.Takei, R.Haramoto, Q.Dong, N.Kumada, Y.Yonesaki, N.Kinomura, T.Mano, S.Nishimoto, Y.Kameshima, M.Miyake: J. Solid State Chem.184 (2011) 2017. 10.1016/j.jssc.2011.06.004Suche in Google Scholar
[28] Y.L.Liu, S.Yang, Y.Lu, N.V.Podval'naya, W.Chen, G.S.Zakharova: Appl. Surf. Sci.359 (2015) 114. 10.1016/j.apsusc.2015.10.071Suche in Google Scholar
[29] J.C.Fan, T.F.Li, H.Heng: Appl. Phys. A119 (2015) 185. 10.1007/s00339-014-8946-6Suche in Google Scholar
[30] Y.X.Li, Y.F.Hu, S.Q.Peng, G.X.Lu, S.B.Li: J. Phys. Chem.C113 (2009) 9352. 10.1021/jp901505jSuche in Google Scholar
[31] H.O.V.Almjasheva, T.A.Denisova: Russ. J. Gen. Chem.87 (2017) 1. 10.1134/S1070363217010017Suche in Google Scholar
[32] L.Z.Pei, L.J.Yang, Y.P.Dong, J.F.Wang, C.G.Fan, J.Chen, W.Y.Yin, Q.F.Zhang: Cryst. Res. Technol.45 (2010) 1087. 10.1002/crat.201000278Suche in Google Scholar
[33] C.Han, M.Pelaez, V.Likodimos, A.G.Kontos, P.Falaras, K.O’Shea, D.D.Dionysioua: Appl. Catal. B: Environ.107 (2011) 77. 10.1016/j.apcatb.2011.06.039Suche in Google Scholar
[34] M.Pelaez, P.Falaras, V.Likodimos, A.Kontos, A.A.D.L.Cruz, K.O’Shea, D.D.Dionysiou: Appl. Catal. B: Environ.99 (2010) 378. 10.1016/j.apcatb.2010.06.017Suche in Google Scholar
[35] H.B.Fu, C.S.Pan, W.Q.Yao, Y.F.Zhu: J. Phys. Chem. B109 (2005) 22432. 10.1021/jp052995jSuche in Google Scholar PubMed
[36] G.M.Liu, X.Z.Li, J.C.Zhao, S.Horikoshi, H.Hidaka: J. Mol. Catal. A: Chem.153 (2000) 221. 10.1016/S1381-1169(99)00351-9Suche in Google Scholar
[37] R.W.Matthews, S.R.Mcevoy: J. Photoch. Photobio. A64 (1992) 231. 10.1016/1010-6030(92)85110-GSuche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- An artificial intelligence paradigm in heuristic search of tensile behaviour of titanium alloys
- The effect of the cooling rate on the course of oxidation of gamma titanium aluminide alloy
- Physical and electrochemical characteristics of low pressure cold sprayed aluminium composite coating on magnesium substrate
- The effect of Al2O3 reinforcement particles on the corrosion behavior of Al(Zn) solid solution matrix
- Effect of Zr content on the existence form of Zr and as-cast structure of high purity commercial aluminium
- Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance
- Structural evolution and formation mechanism of LiNi0.6Co0.2Mn0.2O2 during high-temperature solid-state synthesis
- Review
- Wear behaviour of Mg alloys and their composites – a review
- Short Communications
- Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- An artificial intelligence paradigm in heuristic search of tensile behaviour of titanium alloys
- The effect of the cooling rate on the course of oxidation of gamma titanium aluminide alloy
- Physical and electrochemical characteristics of low pressure cold sprayed aluminium composite coating on magnesium substrate
- The effect of Al2O3 reinforcement particles on the corrosion behavior of Al(Zn) solid solution matrix
- Effect of Zr content on the existence form of Zr and as-cast structure of high purity commercial aluminium
- Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance
- Structural evolution and formation mechanism of LiNi0.6Co0.2Mn0.2O2 during high-temperature solid-state synthesis
- Review
- Wear behaviour of Mg alloys and their composites – a review
- Short Communications
- Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO
- DGM News
- DGM News