Startseite Physical and electrochemical characteristics of low pressure cold sprayed aluminium composite coating on magnesium substrate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Physical and electrochemical characteristics of low pressure cold sprayed aluminium composite coating on magnesium substrate

  • Guosheng Huang
Veröffentlicht/Copyright: 30. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A high Al2O3 content (40 wt.%) reinforced Al coating was deposited on AZ91D magnesium alloy through the low-pressure cold spraying technique. It was found that the low-pressure cold spraying method could deposit a high quality aluminium coating on AZ91D magnesium alloy with bonding strength ranging from 17.7 MPa to 25.2 MPa. The average porosity in this case is about 2.6 %, and the alumina particles are distributed uniformly. Electrochemical tests revealed that the low-pressure cold sprayed Al + 40 % Al2O3 coating has better corrosion resistance than magnesium in neutral 3.5 wt.% sodium chloride solution. Low-pressure cold sprayed aluminium coating can separate the magnesium substrate from a corrosive electrolyte, which can significantly improve the anticorrosion performance of the AZ91D magnesium alloy.


*Correspondence address, Guosheng Huang, Ph.D., Science and Technology on Marine Corrosion and Protection Laboratory, Luoyang Ship Material Research Institute, Aoshanwei Town, Wenhai Road, Qingdao, 266101, P.R. China, Tel.: +86-532-68725121, Fax: +86-532-68725100, E-mail:

References

[1] G.Frank: Surf. Eng.22 (2006) 161. 10.1179/174329406X108906Suche in Google Scholar

[2] B.S.Deforce, T.J.Eden, J.K.Potter: J. Therm. Spray Technol.20 (2011) 1352. 10.1007/s11666-011-9675-4Suche in Google Scholar

[3] M.Winnicki, A.Baszczuk, M.Rutkowska-Gorczyca: Surf. Eng.32 (2016) 691. 10.1016/j.surfcoat.2016.12.101Suche in Google Scholar

[4] A.P.Alkimov, A.N.Papyrin, V.F.Kosarev: US Patent: US5302414 (1994).Suche in Google Scholar

[5] H.Bu, M.Yandouzi, C.Lu, D.Macdonald, B.Jodoin: Surf. Coat. Technol.207 (2012) 155. 10.1016/j.surfcoat.2012.06.050Suche in Google Scholar

[6] K.Spencer, D.M.Fabijanic, M.X.Zhang: Surf. Coat. Technol.204 (2009) 336. 10.1016/j.surfcoat.2012.01.031Suche in Google Scholar

[7] M.Diab: PhD thesis. The Effect of Aluminum Cold Spray Coating on Corrosion Protection and Corrosion Fatigue Life Enhancement of Magnesium Alloy, AZ31B. University of Waterloo, Cananda (2015).Suche in Google Scholar

[8] M.Diab, X.Pang, H.Jahed: Surf. Coat. Technol.309 (2016) 423. 10.1016/j.surfcoat.2016.11.014Suche in Google Scholar

[9] Y.K.Wei, X.T.Luo, C.X.Li, C.J.Li: J. Therm. Spray Technol.26 (2016) 1. 10.1007/s11666-017-0659-xSuche in Google Scholar

[10] M.M.Sharma, T.J.Eden, B.T.Golesich: J. Therm. Spray Technol.24 (2015) 410. 10.1007/s11666-014-0175-1Suche in Google Scholar

[11] H.Y.Bu, M.Yandouzi, C.Lu, D.MacDonald, B.Jodoin: J. Therm. Spray Technol.21 (2012) 731. 10.1016/j.surfcoat.2012.06.050Suche in Google Scholar

[12] S.W.Tang, C.Liu, Y.C.Yu, J.Hu, L.C.Kong: Mater. Chem. Phys.149–150 (2014) 282. 10.1016/j.matchemphys.2014.10.018Suche in Google Scholar

[13] Y.K.Wei, X.T.Luo, C.X.Li, C.J.Li: J. Therm. Spray Technol.26 (2017) 173. 10.1007/s11666-016-0492-7Suche in Google Scholar

[14] V.K.Champagne: J. Failure Analysis and Prevention.8 (2008) 164. 10.1007/s11668-008-9116-ySuche in Google Scholar

[15] J.Villafuerte, D.Wright: Advanced Materials & Processes.168 (2010) 53.Suche in Google Scholar

[16] S.B.Dayani, S.K.Shaha, R.Ghelichi, J.F.Wang, H.Jahed: Surf. Coat. Technol.337 (2018) 150. 10.1016/j.surfcoat.2018.01.008Suche in Google Scholar

[17] V. ChampagneJr, D.Kaplowitz, V.K.ChampagneIII, C.Howe, M.K.West, B.McNally, M.Rokni: Mater. Manuf. Proc.33 (2017) 130. 10.1080/10426914.2016.1257137Suche in Google Scholar

[18] D.Dzhurinskiy, V.Leshchinsky, E.Strumban, E.Maeva, R.G.Maev: Surf. Eng.31 (2015) 740. 179/1743294415Y.0000000036. 10.1Suche in Google Scholar

[19] P.F.Leyman, V.K.Champagne: Army Research Laboratory, Aberdeen Proving Ground, MD (2009).Suche in Google Scholar

[20] S.V.Klinkov, V.F.Kosarev, V.N.Zaikovskii: Surf. Eng.32 (2016) 701. 10.1179/1743294415Y.0000000070Suche in Google Scholar

[21] C.J.Huang, W.Y.Li: Surf. Eng.32 (2016) 663. 0000000089. 10.1179/1743294415MSuche in Google Scholar

[22] T.Yang, M.Yu, H.Chen, W.Y.Li, H.L.Liao: Surf. Eng.32 (2016) 641. 10.1179/1743294415Y.0000000042Suche in Google Scholar

[23] Y.Tao, T.Xiong, C.Sun, L.Kong, X.Cui, T.Li, F.Li, G.Song: Corros. Sci.52 (2010) 3191. 10.1016/j.corsci.2010.05.023Suche in Google Scholar

[24] V.K.Champagne, D.J.Helfritch, M.D.Trexler, B.M.Gabriel: Modell. Simul. Mater. Sci. Eng.18 (2010) 065011. 10.1088/0965-0393/18/6/065011Suche in Google Scholar

[25] Y.Xiong, M.X.Zhang: Surf. Coat. Technol.253 (2014) 89. 10.1016/j.surfcoat.2014.05.018Suche in Google Scholar

[26] L.J.Yang, Y.H.Wei, L.F.Hou, D.Zhang: Corros. Sci.52 (2010) 345. 10.1016/j.corsci.2009.09.020Suche in Google Scholar

[27] H.J.Martin, M.F.Horstemeyer, P.T.Wang: Corros. Sci.53 (2011) 1348. 10.1016/j.corsci.2010.12.025Suche in Google Scholar

Received: 2018-02-24
Accepted: 2018-06-06
Published Online: 2018-10-30
Published in Print: 2018-11-12

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111699/pdf?lang=de
Button zum nach oben scrollen