Home Effect of heat treatment on the precipitation hardening in FeNiCoAlTaB shape memory alloys
Article
Licensed
Unlicensed Requires Authentication

Effect of heat treatment on the precipitation hardening in FeNiCoAlTaB shape memory alloys

  • R. Chulist , M. Prokopowicz , W. Maziarz , P. Ostachowski and N. Schell
Published/Copyright: January 11, 2019
Become an author with De Gruyter Brill

Abstract

In order to obtain optimal mechanical properties, the effect of heat treatment on the precipitation hardening in multicomponent Fe-based shape memory alloys (containing Ni, Co, Al, Ta, B) was studied. The polycrystalline material was investigated after application of three different processing schemas: slowly cooled, quenched and subsequently annealed with various aging conditions. The study was carried out using synchrotron X-ray diffraction along with mechanical tests, revealing the evolution of strengthening phases. As a result an optimum heat treatment for 10 h at 700°C was established yielding an optimal mechanical response.


*Correspondence address, Robert Chulist, Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland, E-mail:

References

[1] E.Hornbogen, W.Meyer: Acta Metall.15 (1967) 584. 10.1016/0001-6160(67)90099-5Search in Google Scholar

[2] T.Maki, in: K.Otsuka, C.W.Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1998.Search in Google Scholar

[3] H.Sehitoglu, I.Karaman, X.Y.Zhang, Y.Chumlyakov, H.J.Maier: Scr. Mater.44 (2001) 779. 10.1016/S1359-6462(00)00657-6Search in Google Scholar

[4] Y.Tanaka, Y.Himuro, R.Kainuma, Y.Sutou, T.Omori, K.Ishida: Science327 (2010) 1488. 10.1126/science.1183169Search in Google Scholar PubMed

[5] I.V.Kireeva, Y.I.Chumlyakov, V.A.Kirillov, I.Karaman, E.Cesari: Tech. Phys. Lett.37 (2011) 86. 10.1134/S1063785011050221Search in Google Scholar

[6] J.Ma, B.Kockar, A.Evirgen, I.Karaman, Z.P.Luo, Y.Chumlyakov: Acta Mater.60 (2012) 2186. 10.1016/j.actamat.2011.12.047Search in Google Scholar

[7] Y.I.Chumlyakov, I.V.Kireeva, E.Y.Panchenko, V.A.Kirillov, E.E.Timofeeva, I.V.Kretinina, Y.N.Danil'son, I.Karaman, H.Maier, E.Cesari: Russ. Phys. J.54 (2012) 937. 10.1007/s11182-011-9701-5Search in Google Scholar

[8] J.Ma, B.C.Hornbuckle, I.Karaman, G.B.Thompson, Z.P.Luo, Y.I.Chumlyakov: Acta Mater.61 (2013) 3445. 10.1016/j.actamat.2013.02.036Search in Google Scholar

[9] D.Lee, T.Omori, R.Kainuma: J. Alloys Compd.617 (2014) 120. 10.1016/j.jallcom.2014.07.136Search in Google Scholar

[10] L.W.Tseng, JiMa, I.Karaman, S.J.Wang, Y.I.Chumlyakov: Scr. Mater.101 (2015) 1. 10.1016/j.scriptamat.2014.12.021Search in Google Scholar

[11] Y.I.Chumlyakov, I.V.Kireeva, O.A.KutzH.E.Karaca, I.Karaman: Scr. Mater.119 (2016) 4346. 10.1016/j.scriptamat.2016.04.008Search in Google Scholar

[12] T.Omori, K.Ando, M.Okano, X.Xu, Y.Tanaka, I.Ohnuma, R.Kainuma, K.Ishida: Science333 (2011) 6871. PMid:21719673; 10.1126/science.1202232Search in Google Scholar PubMed

[13] T.Omori, S.Abe, Y.Tanaka, D.Y.Lee, K.Ishida, K.Kainuma, Scr. Mater.69 (2013) 812815. 10.1016/j.scriptamat.2013.09.006Search in Google Scholar

[14] P.Krooß, H.J.Maier, I.Karaman, Y.I.Chumlyakov, T.Niendorf: Funct. Mater. Lett.05 (2012) 1250045. 10.1142/S1793604712500452Search in Google Scholar

[15] Y.I.Chumlyakov, I.V.Kireeva, E.Y.Panchenko, E.E.Timofeeva, I.Kretinina, O.Kuts, I.Karaman, H.J.Maier: Adv. Mater. Res.1013 (2014) 1522. 10.4028/www.scientific.net/AMR.1013.15Search in Google Scholar

[16] P.Krooß, M.J.Holzweissig, T.Niendorf, C.Somsen, M.Schaper, Y.I.Chumlyakov, H.J.Maier: Scr. Mater.81 (2014) 2831. 10.1016/j.scriptamat.2014.02.020Search in Google Scholar

[17] H.Sehitoglu, X.Y.Zhang, T.Kotil, D.Canadinc, Y.Chumlyakov, H.J.Maier: Metall. Mater. Trans. A33 (2002) 36613672. 10.1007/s11661-002-0240-0Search in Google Scholar

[18] M.Jin, Y.Geng, S.Zuo, X.Jin: Mater. Today: Proc.2S (2015) 837840. 10.1016/j.matpr.2015.07.412Search in Google Scholar

[19] R.Chulist, M.Czerny, A.Panigrahi, M.Zehetbauer, N.Schell, W.Skrotzki: IOP Conf. Ser.: Mater. Sci. and Eng.275 (2018) 012006. 10.1088/1757-899X/375/1/012006Search in Google Scholar

[20] Y.Geng, D.Lee, X.Xu, M.Nagasako, M.Jin, X.Jin, T.Omori, R.Kainuma, J. Alloys Compd.628 (2015) 287292. 10.1016/j.jallcom.2014.12.172Search in Google Scholar

[21] A.Evirgen, J.Ma, I.Karaman, Z.P.LuoY.I.Chumlyakov: Scr. Mater.67 (2012) 457478. 10.1016/j.scriptamat.2012.06.006Search in Google Scholar

[22] N.E.Bekheet, R.M.Gadelrab, M.F.Salah, A.N.Abd El-Azim: Mater. Des.23(2) (2002) 153159. 10.1016/S0261-3069(01)00072-3Search in Google Scholar

[23] L.W.Tseng, JiMa, B.C.Hornbuckle, I.Karaman, G.B.Thompson, Z.P.Luo, Y.I.Chumlyakov: Acta Mater.97 (2015) 234244. 10.1016/j.actamat.2015.06.061Search in Google Scholar

[24] R.Chulist, E.Pagounis, A.Bohm, C.-G.Oertel, W.Skrotzki: Scr. Mater.67 (2012) 363. 10.1016/j.scriptamat.2012.05.026Search in Google Scholar

[25] R.Chulist, W.Skrotzki, C.G.Oertel, A.Bohm, H.G.Brokmeier, T.Lippmann: Int. J. Mater. Res.103 (2012) 575. 10.3139/146.110735Search in Google Scholar

[26] E.Pagounis, R.Chulist, T.Lippmann, M.Laufenberg, W.Skrotzki: Appl. Phys. Lett.103 (2013) 111911. 10.1063/1.4819335Search in Google Scholar

[27] R.Chulist, L.StrakaA.Sozinov, T.Lippmann, W.Skrotzki: Scr. Mater.68 (2013) 671. 10.1016/j.scriptamat.2013.01.024Search in Google Scholar

[28] H.Fu, H.Zhao, S.Song, Z.Zhang, J.Xie: J. Alloys Compd.686 (2016) 10081016. 10.1016/j.jallcom.2016.06.273Search in Google Scholar

Received: 2018-01-16
Accepted: 2018-04-24
Published Online: 2019-01-11
Published in Print: 2019-01-09

© 2019, Carl Hanser Verlag, München

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111688/html
Scroll to top button