Startseite Effect of heat treatment on the precipitation hardening in FeNiCoAlTaB shape memory alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of heat treatment on the precipitation hardening in FeNiCoAlTaB shape memory alloys

  • R. Chulist , M. Prokopowicz , W. Maziarz , P. Ostachowski und N. Schell
Veröffentlicht/Copyright: 11. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In order to obtain optimal mechanical properties, the effect of heat treatment on the precipitation hardening in multicomponent Fe-based shape memory alloys (containing Ni, Co, Al, Ta, B) was studied. The polycrystalline material was investigated after application of three different processing schemas: slowly cooled, quenched and subsequently annealed with various aging conditions. The study was carried out using synchrotron X-ray diffraction along with mechanical tests, revealing the evolution of strengthening phases. As a result an optimum heat treatment for 10 h at 700°C was established yielding an optimal mechanical response.


*Correspondence address, Robert Chulist, Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland, E-mail:

References

[1] E.Hornbogen, W.Meyer: Acta Metall.15 (1967) 584. 10.1016/0001-6160(67)90099-5Suche in Google Scholar

[2] T.Maki, in: K.Otsuka, C.W.Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1998.Suche in Google Scholar

[3] H.Sehitoglu, I.Karaman, X.Y.Zhang, Y.Chumlyakov, H.J.Maier: Scr. Mater.44 (2001) 779. 10.1016/S1359-6462(00)00657-6Suche in Google Scholar

[4] Y.Tanaka, Y.Himuro, R.Kainuma, Y.Sutou, T.Omori, K.Ishida: Science327 (2010) 1488. 10.1126/science.1183169Suche in Google Scholar PubMed

[5] I.V.Kireeva, Y.I.Chumlyakov, V.A.Kirillov, I.Karaman, E.Cesari: Tech. Phys. Lett.37 (2011) 86. 10.1134/S1063785011050221Suche in Google Scholar

[6] J.Ma, B.Kockar, A.Evirgen, I.Karaman, Z.P.Luo, Y.Chumlyakov: Acta Mater.60 (2012) 2186. 10.1016/j.actamat.2011.12.047Suche in Google Scholar

[7] Y.I.Chumlyakov, I.V.Kireeva, E.Y.Panchenko, V.A.Kirillov, E.E.Timofeeva, I.V.Kretinina, Y.N.Danil'son, I.Karaman, H.Maier, E.Cesari: Russ. Phys. J.54 (2012) 937. 10.1007/s11182-011-9701-5Suche in Google Scholar

[8] J.Ma, B.C.Hornbuckle, I.Karaman, G.B.Thompson, Z.P.Luo, Y.I.Chumlyakov: Acta Mater.61 (2013) 3445. 10.1016/j.actamat.2013.02.036Suche in Google Scholar

[9] D.Lee, T.Omori, R.Kainuma: J. Alloys Compd.617 (2014) 120. 10.1016/j.jallcom.2014.07.136Suche in Google Scholar

[10] L.W.Tseng, JiMa, I.Karaman, S.J.Wang, Y.I.Chumlyakov: Scr. Mater.101 (2015) 1. 10.1016/j.scriptamat.2014.12.021Suche in Google Scholar

[11] Y.I.Chumlyakov, I.V.Kireeva, O.A.KutzH.E.Karaca, I.Karaman: Scr. Mater.119 (2016) 4346. 10.1016/j.scriptamat.2016.04.008Suche in Google Scholar

[12] T.Omori, K.Ando, M.Okano, X.Xu, Y.Tanaka, I.Ohnuma, R.Kainuma, K.Ishida: Science333 (2011) 6871. PMid:21719673; 10.1126/science.1202232Suche in Google Scholar PubMed

[13] T.Omori, S.Abe, Y.Tanaka, D.Y.Lee, K.Ishida, K.Kainuma, Scr. Mater.69 (2013) 812815. 10.1016/j.scriptamat.2013.09.006Suche in Google Scholar

[14] P.Krooß, H.J.Maier, I.Karaman, Y.I.Chumlyakov, T.Niendorf: Funct. Mater. Lett.05 (2012) 1250045. 10.1142/S1793604712500452Suche in Google Scholar

[15] Y.I.Chumlyakov, I.V.Kireeva, E.Y.Panchenko, E.E.Timofeeva, I.Kretinina, O.Kuts, I.Karaman, H.J.Maier: Adv. Mater. Res.1013 (2014) 1522. 10.4028/www.scientific.net/AMR.1013.15Suche in Google Scholar

[16] P.Krooß, M.J.Holzweissig, T.Niendorf, C.Somsen, M.Schaper, Y.I.Chumlyakov, H.J.Maier: Scr. Mater.81 (2014) 2831. 10.1016/j.scriptamat.2014.02.020Suche in Google Scholar

[17] H.Sehitoglu, X.Y.Zhang, T.Kotil, D.Canadinc, Y.Chumlyakov, H.J.Maier: Metall. Mater. Trans. A33 (2002) 36613672. 10.1007/s11661-002-0240-0Suche in Google Scholar

[18] M.Jin, Y.Geng, S.Zuo, X.Jin: Mater. Today: Proc.2S (2015) 837840. 10.1016/j.matpr.2015.07.412Suche in Google Scholar

[19] R.Chulist, M.Czerny, A.Panigrahi, M.Zehetbauer, N.Schell, W.Skrotzki: IOP Conf. Ser.: Mater. Sci. and Eng.275 (2018) 012006. 10.1088/1757-899X/375/1/012006Suche in Google Scholar

[20] Y.Geng, D.Lee, X.Xu, M.Nagasako, M.Jin, X.Jin, T.Omori, R.Kainuma, J. Alloys Compd.628 (2015) 287292. 10.1016/j.jallcom.2014.12.172Suche in Google Scholar

[21] A.Evirgen, J.Ma, I.Karaman, Z.P.LuoY.I.Chumlyakov: Scr. Mater.67 (2012) 457478. 10.1016/j.scriptamat.2012.06.006Suche in Google Scholar

[22] N.E.Bekheet, R.M.Gadelrab, M.F.Salah, A.N.Abd El-Azim: Mater. Des.23(2) (2002) 153159. 10.1016/S0261-3069(01)00072-3Suche in Google Scholar

[23] L.W.Tseng, JiMa, B.C.Hornbuckle, I.Karaman, G.B.Thompson, Z.P.Luo, Y.I.Chumlyakov: Acta Mater.97 (2015) 234244. 10.1016/j.actamat.2015.06.061Suche in Google Scholar

[24] R.Chulist, E.Pagounis, A.Bohm, C.-G.Oertel, W.Skrotzki: Scr. Mater.67 (2012) 363. 10.1016/j.scriptamat.2012.05.026Suche in Google Scholar

[25] R.Chulist, W.Skrotzki, C.G.Oertel, A.Bohm, H.G.Brokmeier, T.Lippmann: Int. J. Mater. Res.103 (2012) 575. 10.3139/146.110735Suche in Google Scholar

[26] E.Pagounis, R.Chulist, T.Lippmann, M.Laufenberg, W.Skrotzki: Appl. Phys. Lett.103 (2013) 111911. 10.1063/1.4819335Suche in Google Scholar

[27] R.Chulist, L.StrakaA.Sozinov, T.Lippmann, W.Skrotzki: Scr. Mater.68 (2013) 671. 10.1016/j.scriptamat.2013.01.024Suche in Google Scholar

[28] H.Fu, H.Zhao, S.Song, Z.Zhang, J.Xie: J. Alloys Compd.686 (2016) 10081016. 10.1016/j.jallcom.2016.06.273Suche in Google Scholar

Received: 2018-01-16
Accepted: 2018-04-24
Published Online: 2019-01-11
Published in Print: 2019-01-09

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111688/html
Button zum nach oben scrollen