Home The structure and formation mechanism of FeS2/Fe3S4/S8 nanocomposite synthesized using spherical shaped Fe3O4 nanoparticles as the precursor
Article
Licensed
Unlicensed Requires Authentication

The structure and formation mechanism of FeS2/Fe3S4/S8 nanocomposite synthesized using spherical shaped Fe3O4 nanoparticles as the precursor

  • Adrian Radoń and Dariusz Łukowiec
Published/Copyright: January 11, 2019
Become an author with De Gruyter Brill

Abstract

Synthesis of a nanocomposite containing iron sulfides and sulfur was carried out in ethylene glycol. Spherical-shaped Fe3O4 nanoparticles were used as the precursor. The structure of the FeS2/Fe3S4/S8 nanocomposite, as well as the mechanism of formation, are described with X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Strong interaction between sulfur and oxygen was confirmed. Formation of the FeS2/Fe3S4/S8 nanocomposite was associated with the reaction between Fe3O4 and H2S, and the reaction between greigite and H2S produced by the decomposition of thioacetamide. Highly crystalline pyrite was formed in these reactions, while the sulfur and greigite appearing on the edges formed a highly disordered structure.


*Correspondence address, Dariusz Łukowiec, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44–100 Gliwice, Poland, Tel.: +48322372281, E-mail:

References

[1] M.Khabbaz, M.H.Entezari: J. Colloid Interface Sci.470 (2016) 204210. PMid:26945116; 10.1016/j.jcis.2016.02.055Search in Google Scholar PubMed

[2] T.Li, Z.Guo, X.Li, Z.Wu, K.Zhang, H.Liu, H.Sun, Y.Liu, H.Zhang: RSC Adv. (2015). 10.1039/C5RA22610DSearch in Google Scholar

[3] G.Li, B.Zhang, F.Yu, A.A.Novakova, M.S.Krivenkov, T.Y.Kiseleva, L.Chang, J.Rao, A.O.Polyakov, G.R.Blake, R.A.De Groot, T.T.M.Palstra: Chem. Mater.26 (2014) 58215829. 10.1021/cm501493mSearch in Google Scholar

[4] P.Zhao, H.Cui, J.Luan, Z.Guo, Y.Zhou, H.Xue: Mater. Lett.186 (2017) 6265. 10.1016/j.matlet.2016.09.074Search in Google Scholar

[5] J.Zheng, Y.Cao, C.Cheng, C.Chen, R.-W.Yan, H.-X.Huai, Q.-F.Dong, M.-S.Zheng, C.-C.Wang: J. Mater. Chem. A.2 (2014). 10.1039/c4ta05148cSearch in Google Scholar

[6] Q.D.Li, Q.L.Wei, W.B.Zuo, L.Huang, W.Luo, Q.Y.An, V.O.Pelenovich, L.Q.Mai, Q.J.Zhang: Chem. Sci.8 (2017) 160164. 10.1039/C6SC02716DSearch in Google Scholar

[7] G.Li, G.R.Blake, T.T.M.Palstra: Chem. Soc. Rev.46 (2017) 16931706. 10.1039/C6CS00571CSearch in Google Scholar

[8] S.S.Zhang, D.T.Tran: J. Mater. Chem. A4 (2016) 43714374. 10.1039/C6TA01214KSearch in Google Scholar

[9] W.Liu, Y.Wang, Z.Ai, L.Zhang: ACS Appl. Mater. Interfaces.7 (2015) 2853428544. 10.1021/acsami.5b09919Search in Google Scholar PubMed

[10] D.Susac, L.Zhu, M.Teo, A.Sode, K.C.Wong, P.C.Wong, R.R.Parsons, D.Bizzotto, K.A.R.Mitchell, S.A.Campbell: J. Phys. Chem. C111 (2007) 1871518723. 10.1021/jp073395iSearch in Google Scholar

[11] A.Layek, S.Middya, P. PratimRay: J. Renew. Sustain. Energy, 2013. 10.1063/1.4807613Search in Google Scholar

[12] Y.Bai, J.Yeom, M.Yang, S.H.Cha, K.Sun, N.A.Kotov: J. Phys. Chem. C117 (2013) 25672573. 10.1021/jp3111106Search in Google Scholar

[13] S.P.Guo, J.C.Li, J.R.Xiao, H.G.Xue: ACS Appl. Mater. Interfaces.9 (2017) 3769437701. 10.1021/acsami.7b10406Search in Google Scholar PubMed

[14] Y.Gan, F.Xu, J.Luo, H.Yuan, C.Jin, L.Zhang, C.Fang, O.Sheng, H.Huang, Y.Xia, C.Liang, J.Zhang, W.Zhang, X.Tao: Electrochim. Acta.209 (2016) 201209. 10.1016/j.electacta.2016.05.076Search in Google Scholar

[15] Q.D.Li, Q.L.Wei, W.B.Zuo, L.Huang, W.Luo, Q.Y.An, V.O.Pelenovich, L.Q.Mai, Q.J.Zhang: Chem. Sci.8 (2017) 160164. 10.1039/C6SC02716DSearch in Google Scholar

[16] Y.S.Chang, S.Savitha, S.Sadhasivam, C.K.Hsu, F.H.Lin: J. Colloid Interface Sci.363 (2011) 314319. 10.1016/j.jcis.2010.06.069Search in Google Scholar PubMed

[17] A.Radoń, A.Drygała, Ł.Hawełek, D.Łukowiec: Mater. Charact.131 (2017) 148156. 10.1016/j.matchar.2017.06Search in Google Scholar

[18] M.Klinger: J. Appl. Crystallogr.50 (2017) 12261234. 10.1107/S1600576717006793Search in Google Scholar

[19] M.Klinger, A.Jäger: J. Appl. Crystallogr.48 (2015) 20122018. PMid:26664349; 10.1107/S1600576715017252Search in Google Scholar PubMed PubMed Central

[20] https://www.fzu.cz/∼klinger/crystbox.pdf.Search in Google Scholar

[21] S.Middya, A.Layek, A.Dey, P.P.Ray: J. Mater. Sci. Technol.30 (2014) 770775. 10.1016/j.jmst.2014.01.005Search in Google Scholar

[22] I.J.Dijs, R.de Koning, J.W.Geus, L.W.Jenneskens: Phys. Chem. Chem. Phys.3 (2001) 44234429. 10.1039/b105049bSearch in Google Scholar

[23] D.Santos-Carballal, A.Roldan, N.H.de Leeuw: J. Phys. Chem.C120 (2016) 86168629. 10.1021/acs.jpcc.6b00216Search in Google Scholar

[24] P.H.L.Sit, M.H.Cohen, A.Selloni: J. Phys. Chem. Lett.3 (2012) 24092414. PMid:26292124; 10.1021/jz300996cSearch in Google Scholar PubMed

[25] S.Komarneni, D.Li, B.Newalkar, H.Katsuki, A.S.Bhalla: Langmuir.18 (2002) 59595962. 10.1021/la025741nSearch in Google Scholar

[26] W.M.B.Roberts, A.L.Walker, A.S.Buchanan: Miner. Depos.4 (1969) 1829. 10.1007/BF00206645Search in Google Scholar

[27] S.Hunger, L.G.Benning: Geochem. Trans.8 (2007) 1. PMid:17376247; 10.1186/1467-4866-8-1Search in Google Scholar PubMed PubMed Central

[28] Y.Lan, E.C.Butler: Appl. Geochemistry.50 (2014) 16. 10.1016/j.apgeochem.2014.07.020Search in Google Scholar

Received: 2017-11-13
Accepted: 2018-03-19
Published Online: 2019-01-11
Published in Print: 2019-01-09

© 2019, Carl Hanser Verlag, München

Downloaded on 19.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111670/html
Scroll to top button