The structure and formation mechanism of FeS2/Fe3S4/S8 nanocomposite synthesized using spherical shaped Fe3O4 nanoparticles as the precursor
-
Adrian Radoń
and Dariusz Łukowiec
Abstract
Synthesis of a nanocomposite containing iron sulfides and sulfur was carried out in ethylene glycol. Spherical-shaped Fe3O4 nanoparticles were used as the precursor. The structure of the FeS2/Fe3S4/S8 nanocomposite, as well as the mechanism of formation, are described with X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Strong interaction between sulfur and oxygen was confirmed. Formation of the FeS2/Fe3S4/S8 nanocomposite was associated with the reaction between Fe3O4 and H2S, and the reaction between greigite and H2S produced by the decomposition of thioacetamide. Highly crystalline pyrite was formed in these reactions, while the sulfur and greigite appearing on the edges formed a highly disordered structure.
References
[1] M.Khabbaz, M.H.Entezari: J. Colloid Interface Sci.470 (2016) 204–210. PMid:26945116; 10.1016/j.jcis.2016.02.055Search in Google Scholar PubMed
[2] T.Li, Z.Guo, X.Li, Z.Wu, K.Zhang, H.Liu, H.Sun, Y.Liu, H.Zhang: RSC Adv. (2015). 10.1039/C5RA22610DSearch in Google Scholar
[3] G.Li, B.Zhang, F.Yu, A.A.Novakova, M.S.Krivenkov, T.Y.Kiseleva, L.Chang, J.Rao, A.O.Polyakov, G.R.Blake, R.A.De Groot, T.T.M.Palstra: Chem. Mater.26 (2014) 5821–5829. 10.1021/cm501493mSearch in Google Scholar
[4] P.Zhao, H.Cui, J.Luan, Z.Guo, Y.Zhou, H.Xue: Mater. Lett.186 (2017) 62–65. 10.1016/j.matlet.2016.09.074Search in Google Scholar
[5] J.Zheng, Y.Cao, C.Cheng, C.Chen, R.-W.Yan, H.-X.Huai, Q.-F.Dong, M.-S.Zheng, C.-C.Wang: J. Mater. Chem. A.2 (2014). 10.1039/c4ta05148cSearch in Google Scholar
[6] Q.D.Li, Q.L.Wei, W.B.Zuo, L.Huang, W.Luo, Q.Y.An, V.O.Pelenovich, L.Q.Mai, Q.J.Zhang: Chem. Sci.8 (2017) 160–164. 10.1039/C6SC02716DSearch in Google Scholar
[7] G.Li, G.R.Blake, T.T.M.Palstra: Chem. Soc. Rev.46 (2017) 1693–1706. 10.1039/C6CS00571CSearch in Google Scholar
[8] S.S.Zhang, D.T.Tran: J. Mater. Chem. A4 (2016) 4371–4374. 10.1039/C6TA01214KSearch in Google Scholar
[9] W.Liu, Y.Wang, Z.Ai, L.Zhang: ACS Appl. Mater. Interfaces.7 (2015) 28534–28544. 10.1021/acsami.5b09919Search in Google Scholar PubMed
[10] D.Susac, L.Zhu, M.Teo, A.Sode, K.C.Wong, P.C.Wong, R.R.Parsons, D.Bizzotto, K.A.R.Mitchell, S.A.Campbell: J. Phys. Chem. C111 (2007) 18715–18723. 10.1021/jp073395iSearch in Google Scholar
[11] A.Layek, S.Middya, P. PratimRay: J. Renew. Sustain. Energy, 2013. 10.1063/1.4807613Search in Google Scholar
[12] Y.Bai, J.Yeom, M.Yang, S.H.Cha, K.Sun, N.A.Kotov: J. Phys. Chem. C117 (2013) 2567–2573. 10.1021/jp3111106Search in Google Scholar
[13] S.P.Guo, J.C.Li, J.R.Xiao, H.G.Xue: ACS Appl. Mater. Interfaces.9 (2017) 37694–37701. 10.1021/acsami.7b10406Search in Google Scholar PubMed
[14] Y.Gan, F.Xu, J.Luo, H.Yuan, C.Jin, L.Zhang, C.Fang, O.Sheng, H.Huang, Y.Xia, C.Liang, J.Zhang, W.Zhang, X.Tao: Electrochim. Acta.209 (2016) 201–209. 10.1016/j.electacta.2016.05.076Search in Google Scholar
[15] Q.D.Li, Q.L.Wei, W.B.Zuo, L.Huang, W.Luo, Q.Y.An, V.O.Pelenovich, L.Q.Mai, Q.J.Zhang: Chem. Sci.8 (2017) 160–164. 10.1039/C6SC02716DSearch in Google Scholar
[16] Y.S.Chang, S.Savitha, S.Sadhasivam, C.K.Hsu, F.H.Lin: J. Colloid Interface Sci.363 (2011) 314–319. 10.1016/j.jcis.2010.06.069Search in Google Scholar PubMed
[17] A.Radoń, A.Drygała, Ł.Hawełek, D.Łukowiec: Mater. Charact.131 (2017) 148–156. 10.1016/j.matchar.2017.06Search in Google Scholar
[18] M.Klinger: J. Appl. Crystallogr.50 (2017) 1226–1234. 10.1107/S1600576717006793Search in Google Scholar
[19] M.Klinger, A.Jäger: J. Appl. Crystallogr.48 (2015) 2012–2018. PMid:26664349; 10.1107/S1600576715017252Search in Google Scholar PubMed PubMed Central
[20] https://www.fzu.cz/∼klinger/crystbox.pdf.Search in Google Scholar
[21] S.Middya, A.Layek, A.Dey, P.P.Ray: J. Mater. Sci. Technol.30 (2014) 770–775. 10.1016/j.jmst.2014.01.005Search in Google Scholar
[22] I.J.Dijs, R.de Koning, J.W.Geus, L.W.Jenneskens: Phys. Chem. Chem. Phys.3 (2001) 4423–4429. 10.1039/b105049bSearch in Google Scholar
[23] D.Santos-Carballal, A.Roldan, N.H.de Leeuw: J. Phys. Chem.C120 (2016) 8616–8629. 10.1021/acs.jpcc.6b00216Search in Google Scholar
[24] P.H.L.Sit, M.H.Cohen, A.Selloni: J. Phys. Chem. Lett.3 (2012) 2409–2414. PMid:26292124; 10.1021/jz300996cSearch in Google Scholar PubMed
[25] S.Komarneni, D.Li, B.Newalkar, H.Katsuki, A.S.Bhalla: Langmuir.18 (2002) 5959–5962. 10.1021/la025741nSearch in Google Scholar
[26] W.M.B.Roberts, A.L.Walker, A.S.Buchanan: Miner. Depos.4 (1969) 18–29. 10.1007/BF00206645Search in Google Scholar
[27] S.Hunger, L.G.Benning: Geochem. Trans.8 (2007) 1. PMid:17376247; 10.1186/1467-4866-8-1Search in Google Scholar PubMed PubMed Central
[28] Y.Lan, E.C.Butler: Appl. Geochemistry.50 (2014) 1–6. 10.1016/j.apgeochem.2014.07.020Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- XVI International Conference on Electron Microscopy
- Original Contributions
- Application of analytical electron microscopy and FIB-SEM tomographic technique for phase analysis in as-cast Allvac 718Plus superalloy
- Microstructure and properties of laser interference crystallized amorphous FeSiB ribbon
- Analysis of amorphous regions in severely marformed NiTi shape memory alloy
- Structure of MgLiAl alloys after various routes of severe plastic deformation studied by TEM
- Microstructure and selected mechanical and electrical property analysis of Sr-doped LaCoO3 perovskite thin films deposited by the PLD technique
- Microstructure of an oxide scale formed on ATI 718Plus superalloy during oxidation at 850 °C characterised using analytical electron microscopy
- Effect of powder morphology on the microstructure and properties of cold sprayed Ni coatings
- Microstructure of Ti/Al multilayer foils ignited with electric current
- Evolution of γ′ morphology and γ/γ′ lattice parameter misfit in a nickel-based superalloy during non-equilibrium cooling
- Effect of heat treatment on the precipitation hardening in FeNiCoAlTaB shape memory alloys
- The structure and formation mechanism of FeS2/Fe3S4/S8 nanocomposite synthesized using spherical shaped Fe3O4 nanoparticles as the precursor
- Short Communications
- Characterization of Inconel 625 surface layer modified by laser shock processing
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- XVI International Conference on Electron Microscopy
- Original Contributions
- Application of analytical electron microscopy and FIB-SEM tomographic technique for phase analysis in as-cast Allvac 718Plus superalloy
- Microstructure and properties of laser interference crystallized amorphous FeSiB ribbon
- Analysis of amorphous regions in severely marformed NiTi shape memory alloy
- Structure of MgLiAl alloys after various routes of severe plastic deformation studied by TEM
- Microstructure and selected mechanical and electrical property analysis of Sr-doped LaCoO3 perovskite thin films deposited by the PLD technique
- Microstructure of an oxide scale formed on ATI 718Plus superalloy during oxidation at 850 °C characterised using analytical electron microscopy
- Effect of powder morphology on the microstructure and properties of cold sprayed Ni coatings
- Microstructure of Ti/Al multilayer foils ignited with electric current
- Evolution of γ′ morphology and γ/γ′ lattice parameter misfit in a nickel-based superalloy during non-equilibrium cooling
- Effect of heat treatment on the precipitation hardening in FeNiCoAlTaB shape memory alloys
- The structure and formation mechanism of FeS2/Fe3S4/S8 nanocomposite synthesized using spherical shaped Fe3O4 nanoparticles as the precursor
- Short Communications
- Characterization of Inconel 625 surface layer modified by laser shock processing
- DGM News
- DGM News