Home Thermodynamic modelling of the Hf–Pt system
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic modelling of the Hf–Pt system

  • Bo Yang , Cuiping Guo , Changrong Li and Zhenmin Du
Published/Copyright: August 30, 2018
Become an author with De Gruyter Brill

Abstract

By means of the CALPHAD (CAlcultion of PHAse Diagram) technique, the Hf–Pt system was critically assessed. Based on the experimental data, the four solution phases (liquid, fcc, bcc and hcp) were described with the substitutional solution model. The intermetallic compounds Hf3Pt4 and αHfPt were treated as the formula (Hf,Pt)m(Hf,Pt)n by a two-sublattice model. Based on the solid solution range, the intermetallic compounds HfPt4 and Hf2Pt were treated as the formula (Hf,Pt)1(Pt)3 and (Hf)2(Hf,Pt)1, respectively. The intermetallic compound Hf2Pt3 was treated as a stoichiometric compound. The formulas (Hf,Pt)0.5(Hf,Pt)0.5 · (Va)3 and (Hf,Pt)0.25(Hf,Pt)0.75(Va)0.5 were applied to describe the compounds βHfPt with CsCl-type structure (B2) and HfPt3 with Ni3Ti-type structure (D024) to cope with the order-disorder transition from bcc-A2 to bcc-B2 and hcp-A3 to hcp-D024. A set of self-consistent thermodynamic parameters of the Hf–Pt system was obtained.


*Correspondence address, Prof. Zhenmin Du, Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China, Tel./Fax: +86-10-62333772, E-mail:

References

[1] Trw lnc.Oxidation resistant refractory alloys. US Patent: us 3957507 (1976).Search in Google Scholar

[2] A.Yamaguchi, H.Murakami, S.Kuroda, H.Imai: Mater. T. Jim48 (2007) 2422. 10.2320/matertrans.MAW200723Search in Google Scholar

[3] J.Nesbitt, B.Nagaraj, J.Williams: ntrs.nasa.gov. 2000. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010061700.pdfSearch in Google Scholar

[4] T.D.Hatchard, J.E.Harlow, D.A.Stevens, G.C.K.Liu, R.J.Sanderson, N.van der Bosch, J.R.Dahn, G.M.Haugen, G.D.Vernstrom, R.T.Atansoski: Electrochim. Acta.56 (2011) 10436. 10.1016/j.electacta.2011.05.059Search in Google Scholar

[5] G.M.Nowell, D.G.Pearson, C.J.Ottley, M.Tilby: J. Eng. Educ.93 (2005) 313. 10.1039/9781847552419–00243Search in Google Scholar

[6] A.Baudry, P.Boyer, L.P.Ferreira, S.W.Harris, S.Miraglia, L.Pontonnier: J. Phys.: Condens. Matter.4 (1992) 5025. 10.1088/0953-8984/4/21/018Search in Google Scholar

[7] J.N.Prieskorn, H.Chen, W.Chen, W.J.Tornquist: J. Phys. Chem.96 (1992) 810. 10.1002/chin.199221028Search in Google Scholar

[8] J.K.Stalick, R.M.Waterstrat: J. Phase Equilib. Diff.35 (2014) 15. 10.1007/s11669-013-0268-4Search in Google Scholar

[9] P.J.Meschter, W.L.Worrell: Metall. Trans. A8 (1977) 503. 10.1007/BF02661762Search in Google Scholar

[10] A.E.Dwight, P.E.Beck: Trans. Met. Soc. AIME.215 (1959) 976.Search in Google Scholar

[11] C.E.Holcombe: J. Less-Common Met.44 (1976) 331. 10.1016/0022-5088(76)90149-Search in Google Scholar

[12] A.E.Dwight, R.A.Jr.Conner, J.W.Downey: Acta Crystallogr.18 (1965) 835. 10.1107/S0365110X65002050Search in Google Scholar

[13] V.N.Kuznetsov, G.P.Zhmurko, E.M.Sokolovskaya: J. Less-Common Met.163 (1990) 1. 10.1016/0022-5088(90)90080-4Search in Google Scholar

[14] J.K.Stalick, K.Wang, R.M.Waterstrat: J. Phase Equilib. Diff.34 (2013) 385. 10.1007/s11669-013-0247-9Search in Google Scholar

[15] V.Srikrishnan, P.J.Ficalora: Metall. Mater. Trans. B5 (1974) 1471. 10.1007/BF02646634Search in Google Scholar

[16] J.C.Gachon, J.Charles, J.Hertz: Calphad9 (1985) 29. 10.1016/0364-5916(85)90028-8Search in Google Scholar

[17] L.Topor, O.J.Kleppa: Metall. Mater. Trans. A19 (1988) 1827. 10.1007/BF02645151Search in Google Scholar

[18] X.Q.Chen, R.Podloucky: Calphad30 (2006) 266. 10.1016/j.calphad.2006.04.004Search in Google Scholar

[19] O.Levy, G.L.W.Hart, S.Curtarolo: Acta Mater.58 (2010) 2887. 10.1016/j.actamat.2010.01.017Search in Google Scholar

[20] W.Xing, X.Q.Chen, D.Li, Y.Li, C.L.Fu, S.V.Meschel, X.Ding: Intermetallics28 (2012) 16. 10.1016/j.intermet.2012.03.033Search in Google Scholar

[21] H.Krarcha, A.Ferroudj, S.Mesadia: Solid State Phen.257 (2016) 38. 10.4028/www.scientific.net/SSP.257.38Search in Google Scholar

[22] A.T.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSearch in Google Scholar

[23] O.Redlich, A.T.Kister: Ind. Eng. Chem.40 (1948) 345. 10.1021/ie50458a036Search in Google Scholar

[24] I.Ansara, N.Dupin, H.L.Lukas, S.Bo: J. Alloys Compd.247 (1977) 20. 10.1016/S0925-8388(96)02652-7Search in Google Scholar

[25] M.Hillert, L.I.Staffansson: Acta Chem. Scand.24 (1970) 3618. 10.3891/acta.chem.scand.24-3618Search in Google Scholar

[26] B.Sundman, J.Ågren: J. Phys. Chem. Solids42 (1981) 297. 10.1016/0022-3697(81)90144-XSearch in Google Scholar

[27] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. 10.1016/0364-5916(85)90021-5Search in Google Scholar

[28] C.Wanger: Z. Phys. Chem.22 (1933) 181. 10.1515/zpch-1931-s120Search in Google Scholar

[29] A.F.Guillermet, W.Huang: Z. Metallkd.79 (1988) 88.Search in Google Scholar

Received: 2017-12-28
Accepted: 2018-04-05
Published Online: 2018-08-30
Published in Print: 2018-09-14

© 2018, Carl Hanser Verlag, München

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111676/html?lang=en
Scroll to top button