Home Modelling analysis and experiments of polycrystalline silicon directional solidification in an annular heating field
Article
Licensed
Unlicensed Requires Authentication

Modelling analysis and experiments of polycrystalline silicon directional solidification in an annular heating field

  • Xuli Zhu , Long Xu , Jinmei Huang and Hongqiong Wu
Published/Copyright: November 25, 2017
Become an author with De Gruyter Brill

Abstract

As a solution to the low convection strength of the Bridgman method and the convection control difficulties of the electromagnetic induction melting method, a novel, large directional solidification device with annular heaters arranged above the crucible is designed. The inhomogeneous heating field causes differences in melt density, intensifies controllable natural convection and accelerates the moving of impurities from the solid–liquid interface to the surface of the melt, thereby improving purification efficiency and reducing energy consumption. Although the temperature field is inhomogeneous, vertical crystal growth can still be achieved. Mathematical analytic modelling is used to explain the principle, and the feasibility is verified by experiments. The results show that high-quality and large bulk silicon ingot (1 m × 1 m × 0.45 m) can be produced at an average solidification rate of 3.68 μm s−1.


*Correspondence address, Dr. Xuli Zhu, Department of mechanical and automation engineering, Xiamen City University, No. 1263, Qianpu Road, Xiamen, Fujian 361000, P. R. China, Tel.: +86-592-5909062, E-mail:

References

[1] J.E.Su, D.Park, T.U.Yu, B.M.Moon: IEEE. Phot. Spec. Conf. (2012) 002712. 10.1109/PVSC.2012.6318153Search in Google Scholar

[2] Z.Li, L.Liu, X.Liu, Y.Zhang, J.Xiong: J. Cryst. Growth.385 (2014) 9. 10.1016/j.jcrysgro.2013.01.053Search in Google Scholar

[3] T.Y.Wang, S.L.Hsu, C.C.Fei, K.M.Yei, W.C.Hsu, C.W.Lan: J. Cryst. Growth.311 (2009) 263. 10.1016/j.jcrysgro.2008.10.064Search in Google Scholar

[4] T.F.Li, H.C.Huang, H.W.Tsai, A.Lan, C.Chuck, C.W.Lan: J. Cryst. Growth.340 (2012) 202. 10.1016/j.jcrysgro.2011.12.045Search in Google Scholar

[5] Ch.Kudla, A.T.Blumenau, F.Büllesfeld, N.Dropka, Ch.Frank-Rotsch, F.Kiessling, O.Klein, P.Lange, W.Miller, U.Rehse, U.Sahr, M.Schellhorn, G.Weidemann, M.Ziem: J. Cryst. Growth.365 (2013) 54. 10.1016/j.jcrysgro.2012.11.049Search in Google Scholar

[6] F.Huang, R.Chen, J.Guo, H.Ding, Y.Su, J.Yang, H.Fu: Mat. Sci. Semicon. Proc.15 (2012) 380. 10.1016/j.mssp.2011.12.006Search in Google Scholar

[7] F.M.Kiessling, F.Büllesfeld, N.Dropka, C.Frank-Rotsch, M.Müller, P.Rudolph: J. Cryst. Growth.360 (2012) 81. 10.1016/j.jcrysgro.2012.03.017Search in Google Scholar

[8] K.Nakajima, K.Morishita, R.Murai, K.Kutsukake: J. Cryst. Growth.355 (2012) 38. 10.1016/j.jcrysgro.2012.06.034Search in Google Scholar

[9] D.Zhu, L.Ming, M.Huang, Z.Zhang, X.Huang: J. Cryst. Growth.386 (2014) 52. 10.1016/j.jcrysgro.2013.09.051Search in Google Scholar

[10] T.F.Li, K.M.Yeh, W.C.Hsu, C.W.Lan: J. Cryst. Growth.318 (2011) 219. 10.1016/j.jcrysgro.2010.10.090Search in Google Scholar

[11] C.C.Hsieh, A.Lan, C.Hsu, C.W.Lan: J. Cryst. Growth.401 (2014) 727. 10.1016/j.jcrysgro.2014.01.045Search in Google Scholar

[12] J.W.Shur, B.K.Kang, S.J.Moon, W.W.So, D.H.Yoon: Sol. Energ. Mat. Sol. C.95 (2011) 3159.10.1016/j.solmat.2011.04.020Search in Google Scholar

[13] T.Liu, Z.Dong, Y.Zhao, J.Wang, T.Chen, H.Xie, J.Li, H.Ni, D.Huo: J. Cryst. Growth.355 (2012) 145. 10.1016/j.jcrysgro.2012.06.037Search in Google Scholar

[14] L.Chen, B.Dai: J. Cryst. Growth.354 (2012) 86. 10.1016/j.jcrysgro.2012.06.010Search in Google Scholar

[15] E.Schmid, S.Würzner, C.Funke, V.Galindo, O.Pätzold, M.Stelter: J. Cryst. Growth.359 (2012) 77. 10.1016/j.jcrysgro.2012.08.028Search in Google Scholar

Received: 2017-03-24
Accepted: 2017-08-08
Published Online: 2017-11-25
Published in Print: 2017-12-08

© 2017, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111564/pdf
Scroll to top button