Home Effect of flow, heat transfer and magnetic energy on the grain refinement of 7A04 alloy under electromagnetic pulse
Article
Licensed
Unlicensed Requires Authentication

Effect of flow, heat transfer and magnetic energy on the grain refinement of 7A04 alloy under electromagnetic pulse

  • Qingwei Bai , Yonglin Ma , Shuqing Xing , Xinyu Bao , Yanfei Feng , Wenxia Yu and Xiaolan Kang
Published/Copyright: November 25, 2017
Become an author with De Gruyter Brill

Abstract

In this paper, a transient numerical simulation method was used to analyze the direct chill casting process of 7A04 alloy under electromagnetic pulse treatment. The distribution and evolution of the electromagnetic force, fluid and thermal fields were studied to determine their effect on the solidification characteristics of alloy ingots. A modified nucleation theory for the refinement of grain size was presented considering the effect of electromagnetic energy on the critical Gibbs free energy ΔG* of the unity, which was verified by the corresponding experiments. The results showed that the swirl rings of the axial section in the melt were restrained and a lower temperature gradient was formed in the radial section when the magnetic flux intensity was increased. Under these conditions for nucleation, the grain refinement could be explained by the electromagnetic pulse energy that reduced the energy barrier and improved the nucleation rate, either heterogeneous nucleation or homogeneous nucleation.


*Correspondence address, Prof. Yonglin Ma, School of Material and Metallurgy, Inner Mongolia University of Science & Technology, No. 7 Arding Street, Baotou, ZIP: 014010, P. R. China, Tel.: +8615947629690, E-mail:

First author's contact details, Qingwei Bai, Ph. D. candidate, E-mail:


References

[1] Y.Q.Wang, Z.X.Wang, X.G.Hu, J.K.Han, H.J.Xing: Thin-Wall. Struct.108 (2016) 305. 10.1016/j.tws.2016.08.029Search in Google Scholar

[2] J.W.Yeh, S.H.Jong, W.P.Liu: Metall. Mater. Trans. A.27 (1996) 1933. 10.1007/BF02651943Search in Google Scholar

[3] J.Z.Wang, J.G.Qi, H.L.Du, Z.B.Zhang: J. Iron Steel Res. Int.14 (2007) 75. 10.1016/S1006-706X(07)60015-6Search in Google Scholar

[4] M.J.Li, T.Tamura, N.Omura, Y.Murakami, S.Tada: J. Mater. Process Tech.235 (2016) 114. 10.1016/j.jmatprotec.2016.04.024Search in Google Scholar

[5] T.E.Quested, A.L.Greer: Acta Mater.52 (2004) 3859. 10.1016/j.actamat.2004.04.035Search in Google Scholar

[6] Z.X.Yin, Y.Y.Gong, B.Li, Y.F.Cheng, D.Liang, Q.J.Zhai: J. Mater. Process Tech.212 (2012) 2629. 10.1016/j.jmatprotec.2012.07.013Search in Google Scholar

[7] Z.N.Getselev: JOM.23 (1971) 38. 10.1007/BF03355734Search in Google Scholar

[8] J.Ma, J.Li, Y.Gao, Q.Zhai: Mater. Lett.63 (2009) 142. 10.1016/j.matlet.2008.09.036Search in Google Scholar

[9] Y.Y.Gong, J.Luo, J.X.Jing, Z.Q.Xia, Q.J.Zhai: Mater. Sci. Eng. A-Struct.497 (2008) 147. 10.1016/j.msea.2008.06.027Search in Google Scholar

[10] R.Haghayeghi, P.Kapranos: Mater. Lett.151 (2015) 38. 10.1016/j.matlet.2015.03.026Search in Google Scholar

[11] D.Liang, Z.Y.Liang, Q.J.Zhai, G.Wang, D.H.StJohn: Mater. Lett.130 (2014) 48. 10.1016/j.matlet.2014.05.058Search in Google Scholar

[12] A.Hellawell, S.Liu, S.Z.Lu: JOM.49 (1997) 18. 10.1007/BF02914650Search in Google Scholar

[13] B.Wang, Y.S.Yang, M.L.Sun: Trans. Nonferrous Met. Soc. China.20 (2010) 1685. 10.1016/S1003-6326(09)60358-7Search in Google Scholar

[14] J.Li, J.Ma, Y.Gao, Q.Zhai: Mater. Sci. Eng. A-Struct.490 (2008) 452. 10.1016/j.msea.2008.01.052Search in Google Scholar

[15] D.Turnbull, J.C.Fisher: J. Chem. Phys.17 (1949) 71. 10.1063/1.1747055Search in Google Scholar

[16] M.O.Tang, J.Xu, Z.F.Zhang, Y.L.Bai: Trans. Nonferrous Met. Soc. China.20 (2010) 1591. 10.1016/S1003-6326(09)60344-7Search in Google Scholar

[17] X.Dong, G.Mi, L.He, P.Li: J. Mater. Process Tech.213 (2013) 1426. 10.1016/j.jmatprotec.2013.03.006Search in Google Scholar

[18] Q.C.Le, S.J.Guo, Z.H.Zhao, J.Z.Cui, X.J.Zhang: J. Mater. Process Technol.183 (2007) 194. 10.1016/j.jmatprotec.2006.10.009Search in Google Scholar

[19] B.G.Thomas, L.J.Mika, F.M.Najjar: Metall. Mater. Trans. B21 (1990) 387. 10.1007/BF02664206Search in Google Scholar

[20] L.Pan, D.F.Tao, W.He, B.P.Gu: Journal of Zhejiang University (Engineering Science).50 (2016) 625. 10.3785/j.issn.1008-973X.2016.04.005Search in Google Scholar

[21] Q.Zhang, J.Z.Cui, G.M.Lu, B.J.Zhang: Mater. Rev.16 (2002) 61.Search in Google Scholar

[22] G.Reinhart, A.Buffet, H.Nguyen-Thi, B.Billia, H.Jung, N.Mangelinck-Noël, N.Bergeon, T.Schenk, J.Härtwig, J.Baruchel: Metall. Mater. Trans. A.39 (2008) 865. 10.1007/s11661-007-9449-2Search in Google Scholar

[23] W.M.Mao, A.M.Zhao, C.L.Cui, X.Zhong: Acta Metall. Sin.35 (1999) 971. 10.1016/S1468-6996(01)00032-8Search in Google Scholar

[24] Y.J.Li, W.Z.Tao, Y.S.Yan: J. Mater. Process Tech.212 (2012) 903. 10.1016/j.jmatprotec.2011.11.018Search in Google Scholar

[25] M.Nakada, Y.Shiohara, M.C.Flemings: ISIJ Int.30 (1990) 27. 10.1016/0956-716X(94)90465-0Search in Google Scholar

[26] H.Fredriksson, U.Åkerlind: Materials Processing during Casting. John Wiley & Sons Ltd, England, 2006.10.1002/9780470017920Search in Google Scholar

[27] S.Z.Lu, A.Hellawell: Metall. Mater. Trans. A18 (1987) 1721. 10.1007/BF02646204Search in Google Scholar

[28] J.K.Choi, H.Ohtsuka, Y.Xu, W.Y.Choo: Scripta Mater.43 (2000) 221. 10.1016/S1359-6462(00)00394-8Search in Google Scholar

[29] P.Terzieff, R.Lück: J. Alloys Compd.360 (2003) 205. 10.1016/S0925-8388(03)00347-5Search in Google Scholar

[30] E.A.Brandes: Smithells metals reference book, sixth edition. Butterworth & Co C Publishers Ltd, New York, 1983.Search in Google Scholar

[31] M.Gündüz, J.D.Hunt: Acta Metall.37 (1989) 1839. 10.1016/0001-6160(89)90068-0Search in Google Scholar

Received: 2017-03-24
Accepted: 2017-08-08
Published Online: 2017-11-25
Published in Print: 2017-12-08

© 2017, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111562/pdf?lang=en
Scroll to top button