Startseite Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering

  • Lin-Zhi Wang und Wen-Hou Wei
Veröffentlicht/Copyright: 22. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Monolithic ZK61 magnesium alloy and carbon nanotube (CNT)-reinforced ZK61 matrix composites were successfully prepared via spark plasma sintering. The effects of the sintering temperature on the microstructure and mechanical properties of monolithic ZK61 were studied, and the microstructural and mechanical properties of CNT/ZK61 composites were investigated as functions of the CNT content. The grain sizes of the CNT/ZK61 composites are smaller and more homogeneous than those of the monolithic ZK61 powder, and the width of the grain boundary is greater than those present in ZK61. The Vickers hardness and compressive yield strength of the CNT/ZK61 composites are observed to initially increase with increasing CNT content, reaching a maximum at 1.5 wt.% CNT, however, these values begin to decrease as the content increases further. We believe that this is owing to the grain refinement effect and load transfer mechanism of the CNT.


*Correspondence address, Wen-Hou Wei, Chongqing Key Laboratory of Additive Manufacturing Technology and Systems, Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China, Tel.: +862365935779, Fax: +862365935573, E-mail:

References

[1] N.Gupta, D.D.Luong, K.Cho: Metals2 (2012) 238. 10.3390/met2030238Suche in Google Scholar

[2] S.Ho, C.Ravindran, G.D.Hibbard: Scr. Mater.62 (2010) 21. 10.1016/j.scriptamat.2009.09.016Suche in Google Scholar

[3] E.L.Zhang, M.Z.Ma: Int. J. Mater. Res.100 (2009) 684. 10.3139/146.110085Suche in Google Scholar

[4] Q.Z.Li: Mater. Des.89 (2016) 978. 10.1016/j.matdes.2015.09.134Suche in Google Scholar

[5] I.J.Polmear: Mater. Sci. Technol.10 (1994) 1. 10.1179/mst.1994.10.1.1Suche in Google Scholar

[6] M.Mounib, M.Pavese, C.Badini, W.Lefebvre, H.Dieringa: Adv. Mater. Sci. Eng. (2014) Art. #476079. 10.1155/2014/476079Suche in Google Scholar

[7] S.K.Kim, Y.J.Kim: Mater. Sci. Technol.18 (2002) 1507. 10.1179/026708302225007268Suche in Google Scholar

[8] M.J.Shen, T.Ying, F.Y.Chen, J.M.Hou: J. Mater. Eng. Perform.25 (2016) 2222. 10.1007/s11665-016-2068-6Suche in Google Scholar

[9] M.H.Nai, J.Wei, M.Gupta: Mater. Des.60 (2014) 490. 10.1016/j.matdes.2014.04.011Suche in Google Scholar

[10] K.K.Deng, K.Wu, Y.W.Wu, K.B.Nie, M.Y.Zheng: J. Alloys Compd.504 (2010) 542. 10.1016/j.jallcom.2010.05.159Suche in Google Scholar

[11] M.Paramsothy, Q.B.Nguyen, K.S.Tun, J.Chan, R.Kwok, J.V.M.Kuma, M.Gupta: J. Alloys Compd.506 (2010) 600. 10.1016/j.jallcom.2010.07.123Suche in Google Scholar

[12] Y.M.Hwang, S.J.Huang, Y.S.Huang: Int. J. Adv. Manuf. Technol.68 (2013) 1361. 10.1007/s00170-013-4927-8Suche in Google Scholar

[13] K.Kondoh, H.Fukuda, J.Umeda, H.Imai, B.Fugetsu, M.Endo: Mater. Sci. Eng. A-Struct.527 (2010) 4103. 10.1016/j.msea.2010.03.049Suche in Google Scholar

[14] H.Dieringa: J. Mater. Sci.46 (2011) 289. 10.1007/s10853-010-5010-6Suche in Google Scholar

[15] C.S.Goh, J.Wei, L.C.Lee, M.Gupta: Sci. Tech. Hybrid Mater.111 (2006) 179.Suche in Google Scholar

[16] L.Condon, T.Hemraj-Benny: Abstr. Am. Chem. Soc.244 (2012) 1155.Suche in Google Scholar

[17] X.S.Zeng, Y.Liu, Q.Y.Huang, G.Zeng, G.H.Zhou: Mater. Sci. Eng. A-Struct.571 (2013) 150. 10.1016/j.msea.2013.02.014Suche in Google Scholar

[18] Y.Shimizu, S.Miki, T.Soga, I.Itoh, H.Todoroki, T.Hosono, K.Sakaki, T.Hayashi, Y.A.Kim, M.Endo, S.Morimoto, A.Koide: Scr. Mater.58 (2008) 267. 10.1016/j.scriptamat.2007.10.014Suche in Google Scholar

[19] E.Carreno-Morelli, J.Yang, E.Couteau, K.Hernadi, J.W.Seo, C.Bonjour, L.Forro, R.Schaller: Phys. Status Solidi A201 (2004) R53. 10.1002/passa.200409045Suche in Google Scholar

[20] W.N.A.W.Muhammad, Z.Sajuri, Y.Mutoh, Y.Miyashita: J. Alloys Compd.509 (2011) 6021. 10.1016/j.jallcom.2011.02.153Suche in Google Scholar

[21] C.Y.Xu, S.S.Jia, Z.Y.Cao: Mater. Charact.54 (2005) 394. 10.1016/j.matchar.2004.12.006Suche in Google Scholar

[22] J.Q.Xu, L.Y.Chen, H.Choi, X.C.Li: J. Phys.-Condens. Mater.24 (2012) Artn 255304. 10.1088/0953-8984/24/25/255304Suche in Google Scholar PubMed

[23] M.K.Habibi, M.Paramsothy, A.M.S.Hamouda, M.Gupta: J. Mater. Sci.46 (2011) 4588. 10.1007/s10853-011-5358-2Suche in Google Scholar

[24] H.Mindivan, A.Efe, A.H.Kosatepe, E.S.Kayali: Appl. Surf. Sci.318 (2014) 234. 10.1016/j.apsusc.2014.04.127Suche in Google Scholar

[25] J.Jayakumar, B.K.Raghunath, T.H.Rao: Adv. Mater. Sci. Eng.2013 (2013) Art. #539027. 10.1155/2013/539027Suche in Google Scholar

[26] A.D.Akinwekomi, W.C.Law, C.Y.Tang, L.Chen, C.P.Tsui: Compos. Part B-Eng.93 (2016) 302. 10.1016/j.compositesb.2016.03.041Suche in Google Scholar

Received: 2016-10-26
Accepted: 2016-12-19
Published Online: 2017-02-22
Published in Print: 2017-03-13

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111474/pdf?lang=de
Button zum nach oben scrollen