Nano-particles in powder injection molding of an aluminum matrix composite: Rheological behavior, production and properties
-
Hassan Abdoos
, Hamid Khorsand und Ali Akbar Yousefi
Abstract
Feedstocks containing 54 and 60 vol.% powder loadings were prepared using a multi-component binder and different amounts of nano-alumina (0–9 wt.%). Feedstock containing 60 vol.% powder and 6 wt.% nano-alumina had the lowest shear rate sensitivity (n). The Al feedstocks containing nanoparticles were injected, de-bound and sintered. The rate of solvent de-binding for samples containing nano-particles was slightly lower than that of similar specimens. Results showed that nano-scale additive caused increased relative density, hardness and strength of manufactured composites, but decreased shrinkage and grain size. The composite with 54 vol.% powder loading and 9 wt.% nano-alumina had the best evaluations for mechanical properties. Particle clustering caused a decline in all evaluations for mechanical properties for 60 vol.% powder loading and 9 wt.% nano-alumina sample.
References
[1] M.Rahimian, N.Parvin, N.Ehsani: Mater. Sci. Eng. A527 (2010) 1031. 10.1016/j.msea.2009.09.034Suche in Google Scholar
[2] C.Tatar, N.Özdemir: Physica B405 (2010) 896. 10.1016/j.physb.2009.10.010Suche in Google Scholar
[3] H.Su, W.Gao, Z.Feng, Z.Lu: Mater. Des.36 (2012) 590. 10.1016/j.matdes.2011.11.064Suche in Google Scholar
[4] H.Ye, X.Y.Liu, H.Hong: J. Mater. Process. Technol.200 (2007) 12. 10.1016/j.jmatprotec.2007.10.066Suche in Google Scholar
[5] R.Supati, N.H.Loh, K.A.Khor, S.B.Tor: Mater. Lett.46 (2000) 109. 10.1016/S0167-577X(00)00151-8Suche in Google Scholar
[6] S.F.Hassan, M.Gupta: Mater. Sci. Eng. A392 (2005) 163. 10.1016/j.msea.2004.09.047Suche in Google Scholar
[7] V.P.Onbattuvelli, R.K.Enneti, S.J.Park, S.V.Atre: Int. J. Refract. Met. Hard Mater.36 (2013) 183. 10.1016/j.ijrmhm.2012.08.014Suche in Google Scholar
[8] D.C.Jia: Mater. Sci. Eng. A289 (2000) 83. 10.1016/S0921-5093(00)00897-2Suche in Google Scholar
[9] V.P.Onbattuvelli, R.K.Enneti, S.V.Atre: Ceram. Int.38 (2012) 6495. 10.1016/j.ceramint.2012.05.028Suche in Google Scholar
[10] V.P.Onbattuvelli, R.K.Enneti, S.V.Atre: Ceram. Int.38 (2012) 5393. 10.1016/j.ceramint.2012.03.049Suche in Google Scholar
[11] M.Khakbiz, A.Simchi, R.Bagheri: Mater. Sci. Eng. A407 (2005) 105. 10.1016/j.msea.2005.06.057Suche in Google Scholar
[12] B.Huang, J.Fan, S.Liang, X.Qu: J. Mater. Process. Technol.137 (2003) 177. 10.1016/S0924-0136(02)01090-7Suche in Google Scholar
[13] Y.Kim, S.Lee, J.W.Noh, S.H.Lee, I.D.Jeong, S.J.Park: Int. J. Refract. Met. Hard Mater.41 (2013) 442. 10.1016/j.ijrmhm.2013.06.001Suche in Google Scholar
[14] S.M.Olhero, J.M.Ferreira: Powder Technol.139 (2004) 69–75. 10.1016/j.powtec.2003.10.004Suche in Google Scholar
[15] Z.Y.Liu, D.Kent, G.B.Schaffer: Mater. Sci. Eng. A513–514 (2009) 352. 10.1016/j.msea.2009.02.001Suche in Google Scholar
[16] F.Ahmad: Int. J. Powder Metall.44 (2008) 69. ISSN: 0888-7462.Suche in Google Scholar
[17] H.Abdoos, H.Khorsand, A.A.Yousefi: Iran. Polym. J.23 (2014) 745. 10.1007/s13726-014-0268-1Suche in Google Scholar
[18] MPIF 46: Standard method for Determination of Tap Density of Metal Powder, Metal Powder Industries Federation (MPIF), Princeton, NJ, USA (2010).Suche in Google Scholar
[19] ASTM E1131: Standard test method for compositional analysis by thermogravimetry, ASTM International, West Conshohocken, PA (2014). 10.1520/E1131Suche in Google Scholar
[20] ASTM D1708–02a: Standard test method for tensile properties of plastics by use of microtensile specimens, ASTM International, West Conshohocken, PA (2002). 10.1520/D1708-02ASuche in Google Scholar
[21] F.H.Lege: American Society for Metals Hand Book, Metallography and Microstructure. Vol. 9, ASM, Ohio, USA (1984).Suche in Google Scholar
[22] MPIF 43: Method for determination of apparent hardness of powder metallurgy products, Metal Powder Industries Federation (MPIF), Princeton, NJ, USA (2010).Suche in Google Scholar
[23] I.M.Krieger, T.J.Dougherty: Trans. Soc. Rheol.3 (1959) 137. 10.1122/1.548848Suche in Google Scholar
[24] D.Quemada: Rheol. Acta16 (1977) 82. 10.1007/BF01516932Suche in Google Scholar
[25] B.Huang, S.Liang, X.Qu: J. Mater. Process. Technol.137 (2003) 132. 10.1016/S0924-0136(02)01100-7Suche in Google Scholar
[26] M.E.Sotomayor, A.Várez, B.Levenfeld: Powder Technol.200 (2010) 30. 10.1016/j.powtec.2010.02.003Suche in Google Scholar
[27] G.E.Dieter: Mechanical metallurgy, McGraw-Hill, New York, USA (1986).Suche in Google Scholar
[28] Y.Li, L.Li, K.A.Khalil: J. Mater. Process. Technol.183 (2007) 432. 10.1016/j.jmatprotec.2006.10.039Suche in Google Scholar
[29] K.H.Kim, B.T.Lee, C.J.Choi: J. Alloys Compd.491 (2010) 391. 10.1016/j.jallcom.2009.10.192Suche in Google Scholar
[30] A.Slipenyuk, V.Kuprin, Y.Milman, V.Goncharuk, J.Eckert: Acta Mater.54 (2006) 157. 10.1016/j.actamat.2005.08.036Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy
- Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13
- Microstructure and mechanical properties of nickel particle reinforced magnesium composite: impact of reinforcement introduction method
- Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering
- Solidification microstructures of Cu–Zr–Al–Y BMG produced by casting in a wedge-shaped copper mold
- Energy spectrum analysis of anodic oxidation film surface–interface on 7475 aluminum alloy after salt spray corrosion
- Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites
- The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics
- The effect of heating rate on the microstructural breakdown required for thixoformability
- Nano-particles in powder injection molding of an aluminum matrix composite: Rheological behavior, production and properties
- Short Communications
- Preparation of vaterite CaCO3 microspheres by fast precipitation method
- Slag corrosion resistance of Al4SiC4
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy
- Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13
- Microstructure and mechanical properties of nickel particle reinforced magnesium composite: impact of reinforcement introduction method
- Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering
- Solidification microstructures of Cu–Zr–Al–Y BMG produced by casting in a wedge-shaped copper mold
- Energy spectrum analysis of anodic oxidation film surface–interface on 7475 aluminum alloy after salt spray corrosion
- Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites
- The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics
- The effect of heating rate on the microstructural breakdown required for thixoformability
- Nano-particles in powder injection molding of an aluminum matrix composite: Rheological behavior, production and properties
- Short Communications
- Preparation of vaterite CaCO3 microspheres by fast precipitation method
- Slag corrosion resistance of Al4SiC4
- DGM News
- DGM News