The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics
-
Le Dai Vuong
und Nguyen Truong Tho
Abstract
In this study, Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT) ceramics were fabricated via the conventional solid-state reaction using ultrasound waves for preliminary milling. The milling time was shortened from 20 h to 1 h with ball milling. The phase structure of BNKT investigated by X-ray diffraction showed a single perovskite phase. With increasing Li2CO3 content, the phase structure of the ceramics changed from rhombohedral to tetragonal. At a sintering temperature of 1100 °C and Li2CO3 content of 0.4 wt.%, the best physical properties of the ceramics, such as density (ρ), 5.9 g cm−3; electromechanical coupling factors (kp), 0.32; (kt), 0.29; remanent polarization (Pr), 12.0 μC cm−2; dielectric constant (∊r), 1 191; and highest dielectric constant (∊max), 5 800, were obtained.
References
[1] Y.Xu: Ferroelectric Materials and Their Applications. North-Holland, Amsterdam-London-New York-Tokyo (1991) ISBN: 9780444883544.Suche in Google Scholar
[2] C.Ederer, N.A.Spaldin: Phys. Rev. B.71 (2005) 224103. 10.1103/PhysRevB.71.224103Suche in Google Scholar
[3] S.J.Kim: J. Korean Phys. Soc.56 (2010) 439–442. 10.3938/jkps.56.439Suche in Google Scholar
[4] S.O.Leontsev, R.E.Eitel: J. Am. Ceram. Soc.92 (2009) 2957. 10.1111/j.1551–2916.2009.03313.xSuche in Google Scholar
[5] Y.Saito, H.Takao, T.Nonoyama, K.Takatori, T.Homma, T.Nagaya, M.Nakamuna: Nature432 (2004) 84–87. 10.1038/nature03028Suche in Google Scholar PubMed
[6] G.A.Smolenskii, V.A.Isupov, A.I.Agranovskaya, N.N.Krainik: Sov. Phys. Solid State (Engl. Transl.)2 (1961) 2651. 10.1063/1.1732613Suche in Google Scholar
[7] M.Zhu, L.Hou, Y.Hou, J.Liu, H.Wang, H.Yan: Mater. Chem. Phys.99 (2006) 329–332. 10.1016/j.matchemphys.2005.10.031Suche in Google Scholar
[8] M.Izumi, K.Yamamoto, M.Suzuki, Y.Noguchi, M.Miyayama: Appl. Phys. Lett.93 (2008) ID 242903. 10.1063/1.3046791Suche in Google Scholar
[9] R.Zuo, H.Wang, B.Ma, L.Li: J. Mater. Sci.-Mater. Electron.20 (2009) 1140–1143. 10.1007/s10854-008-9840-9Suche in Google Scholar
[10] N.Truong-Tho, L.D.Vuong: Wulfenia J.22 (2015) 250–258.Suche in Google Scholar
[11] Y.Liao, D.Xiao,D.Lin, J.Zhu, P.Yu, L.Wu, X.Wang: Mater. Sci. Eng. B133:1–3 (2006) 172–176. 10.1016/j.mseb.2006.06.026Suche in Google Scholar
[12] E.Taghaddos, M.Hejazi, A.Safari: J. Am. Ceram. Soc.97 (2014) 1756–1762. 10.1111/jace.12805Suche in Google Scholar
[13] D. ThiHinh, M.R.Bafandeh, J.K.Kang, C.H.Hong, W.Joc, J.S.Lee: Ceram. Int.41 (2015) 458–463. 10.1016/j.ceramint.2015.03.150Suche in Google Scholar
[14] L.D.Vuong, P.D.Gio, N.D. TungLuan, H.Cheolkeun: Wulfenia J.22 (2015) 216–227.Suche in Google Scholar
[15] A.Ullah, C.W.Ahn, A.Hussain, I.W.Kim: Curr. Appl. Phys.10 (2010) 1367–1371. 10.1016/j.cap.2010.05.004Suche in Google Scholar
[16] S.Bhandari, N.Sinha, G.Raya, B.Kumara: Scr. Mater.89 (2014) 61–64. 10.1016/j.scriptamat.2014.06.029Suche in Google Scholar
[17] L.D.Vuong, P.D.Gio, Int. J. Mater. Sci. Appl.2 (2013) 89–93.Suche in Google Scholar
[18] B.Wang, L.Luo, F.Ni, P.Du, W.Li, H.Chen: J. Alloys Compd.526 (2013) 79–84. 10.1016/j.jallcom.2012.02.114Suche in Google Scholar
[19] Y.Yuan, S.Zhang, X.Zhou: J. Mater. Sci.-Mater. Electron.20 (2009) 1090–1094. 10.1007/s10854-008-9832-9Suche in Google Scholar
[20] Y.Yuan, S.R.Zhang, X.H.Zhou: J. Mater. Sci. Lett.41 (2006) 565–567. 10.1007/s10853-005-4238-zSuche in Google Scholar
[21] S.H.Kang, C.W.Ahn, H.J.Lee, I.W.Kim, E.C.Park, J.S.Lee: J. Electroceram.21 (2008) 855–858. 10.1007/s10832-008-9507-1Suche in Google Scholar
[22] J.Yoo, S.Lee: Trans. Electr. Electron. Mater.10 (2009) 121–125. 10.4313/TEEM.2009.10.4.121Suche in Google Scholar
[23] Y.Zhang, R.Chu, Z.Xu, Q.Chen, Y.Liu, G.Zhang: Curr. Appl. Phys.12 (2012) 204–209. 10.1016/j.cap.2011.06.002Suche in Google Scholar
[24] A.Ullah, A.Ullah, I.W.Kim, D.S.Lee, S.J.Jeong, C.W.Ahn: J. Am. Ceram. Soc.97 (2014) 2471–2478. 10.1111/jace.12952Suche in Google Scholar
[25] M.R.Yang, S.Y.Chu, C.C.Tsai: J. Alloys Compd.507 (2010), 433–438. 10.1016/j.jallcom.2010.07.150Suche in Google Scholar
[26] S.Zhang, E.F.Alberta: IEEE Trans. Ultrason. Ferroelectr. Freq. Control52 (2005) 2131–2139. 10.1109/TUFFC.2005.1561684Suche in Google Scholar
[27] K.W.Kwok, H.L.W.Chan, C.L.Choy: IEEE Trans. Ultrason. Ferroelectr. Freq. Control44 (1997) 733–742. 10.1109/58.655188Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy
- Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13
- Microstructure and mechanical properties of nickel particle reinforced magnesium composite: impact of reinforcement introduction method
- Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering
- Solidification microstructures of Cu–Zr–Al–Y BMG produced by casting in a wedge-shaped copper mold
- Energy spectrum analysis of anodic oxidation film surface–interface on 7475 aluminum alloy after salt spray corrosion
- Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites
- The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics
- The effect of heating rate on the microstructural breakdown required for thixoformability
- Nano-particles in powder injection molding of an aluminum matrix composite: Rheological behavior, production and properties
- Short Communications
- Preparation of vaterite CaCO3 microspheres by fast precipitation method
- Slag corrosion resistance of Al4SiC4
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy
- Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13
- Microstructure and mechanical properties of nickel particle reinforced magnesium composite: impact of reinforcement introduction method
- Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering
- Solidification microstructures of Cu–Zr–Al–Y BMG produced by casting in a wedge-shaped copper mold
- Energy spectrum analysis of anodic oxidation film surface–interface on 7475 aluminum alloy after salt spray corrosion
- Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites
- The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics
- The effect of heating rate on the microstructural breakdown required for thixoformability
- Nano-particles in powder injection molding of an aluminum matrix composite: Rheological behavior, production and properties
- Short Communications
- Preparation of vaterite CaCO3 microspheres by fast precipitation method
- Slag corrosion resistance of Al4SiC4
- DGM News
- DGM News