Home Influence of germanate anomaly on elastic, structural, and optical properties of xNa2O-(99–x)[80GeO2:20PbO]-1Er2O3 lead–germanate glasses
Article
Licensed
Unlicensed Requires Authentication

Influence of germanate anomaly on elastic, structural, and optical properties of xNa2O-(99–x)[80GeO2:20PbO]-1Er2O3 lead–germanate glasses

  • Mohd Fauzi Maulud and Ahmad Kamal Yahya
Published/Copyright: November 25, 2016
Become an author with De Gruyter Brill

Abstract

A sodium–lead–germanate glass system, with a composition of xNa2O-((100–y)–x)[80GeO2:20PbO]-yEr2O3 (x = 0–25 mol.%, y = 0, 1 mol.%), was prepared by melt quenching and used to investigate the effect of Na2O and Er2O3 on the germanate anomaly. The structural and optical properties of the glass samples were investigated using X-ray diffraction, Fourier transform infrared, and UV–Vis spectroscopy analyses. Elastic properties of Er2O3-doped glasses (y = 1) were studied by measuring longitudinal and shear velocities through the pulse-echo method at 5 MHz. Based on Fourier transform infrared spectroscopy analysis of Er2O3-doped glasses, the conversion of GeO4 into GeO6 indicates that the glass system possesses the germanate anomaly characteristic but has no density anomaly. Longitudinal, shear, bulk, and Young's moduli (CL, μ, K, and E, respectively) increased to their maximum values at x = 10 mol.% but decreased with increasing amount of Na2O added. This finding reveals the elastic nature of the germanate anomaly. Increase in elastic moduli indicates enhanced network rigidity of the glass system in the germanate anomaly region, where the coordination number increased with the transformation of GeO4 to GeO6. Subsequent decrease in elastic moduli (x > 10 mol.%) denotes weakened network rigidity of the glass system because of enhanced formation of non-bridging oxygen. Furthermore, analysis using bulk compression and ring deformation models reveals the nonlinear trends of Kbc/Ke ratio and average ring size diameter as a result of the germanate anomaly. The anomaly also influenced optical properties of both Er2O3-doped (y = 1) and Er2O3-free (y = 0) glasses, where the optical energy gap (Eopt) decreased with the addition of Na2O up to 10 mol.% and slightly increased with more than 10 mol.% Na2O. By contrast, Urbach energy (EU) and refractive index (n) showed opposite trends to that of Eopt. The behavior of EU indicates changes in defect concentration, which affects Eopt and n.


*Correspondence address, Dr. A. K. Yahya, Faculty of Applied Sciences, Universiti Teknologi Mara, 40450 Shah Alam, Selangor, Malaysia, Tel.: +603-55444613, Fax: +603-5544 4562, E-mail:

References

[1] E.Mansour: Physica B: Condens. Matter362 (2005) 88. 10.1016/j.physb.2005.01479Search in Google Scholar

[2] B.Dutta, N.A.Fahmy, I.L.Pegg: J. Non-Cryst. Solids351 (2005) 1958. 10.1016/j.jnoncrysol.2005.05.005Search in Google Scholar

[3] G.Berg, A.Ludwig: J. Non-Cryst. Solids170 (1994) 109. 10.1016/0022-3093(94)90111-2Search in Google Scholar

[4] H.T.Munasinghe, A.Winterstein-Beckmann, C.Schiele, D.Manzani, L.Wondraczek, ShahraamAfshar V., T.M.Monro, H.Ebendorff-Heidepriem: Opt. Mater. Express3 (2013) 1488. 10.1364/ome.3.001488Search in Google Scholar

[5] G.Bai, L.Tao, K.Li, L.Hu, Y.H.Tsang: Opt. Mater.35 (2013) 1247. 10.1016/j.optmat.2013.01.017Search in Google Scholar

[6] R.Balda, J.Fernández, M.A.Arriandiaga, J.M.Fdez-Navarro: Opt. Mater.25 (2004) 157. 10.1016/s0925-3467(03)00264-7Search in Google Scholar

[7] R.T.Amos, G.S.Henderson: J. Non-Cryst. Solids331 (2003) 108. 10.1016/j.jnoncrysol.2003.09.009Search in Google Scholar

[8] V.C. VeerannaGowda: Physica B: Condens. Matter456 (2015) 298. 10.1016/j.physb.2014.09.004Search in Google Scholar

[9] G.S.Henderson: J. Non-Cryst. Solids353 (2007) 1695. 10.1016/j.jnoncrysol.2007.02.037Search in Google Scholar

[10] A.Abd El-Moneim: Mater. Chem. Phys.98 (2006) 261. 10.1016/j.matchemphys.2005.09.016Search in Google Scholar

[11] M.K.Murthy, J.Ip: Nature201 (1964) 285. 10.1038/201285a0Search in Google Scholar

[12] E.F.Riebling: J. Chem. Phys.39 (1963) 3022. 10.1063/1.1734549Search in Google Scholar

[13] G.S.Henderson, R.T.Amos: J. Non-Cryst. Solids328 (2003) 1. 10.1016/s0022-3093(03)00478-2Search in Google Scholar

[14] G.S.Henderson, L.G.Soltay, H.M.Wang: J. Non-Cryst. Solids356 (2010) 2480. 10.1016/j.jnoncrysol.2010.03.023Search in Google Scholar

[15] M.Rada, E.Culea, S.Rada, A.Bot, N.Aldea, V.Rednic: J. Non-Cryst. Solids358 (2012) 3129. 10.1016/j.jnoncrysol.2012.08.026Search in Google Scholar

[16] S.El-Rabaie, T.A.Taha, A.A.Higazy: Physica B: Condens. Matter432 (2014) 40. 10.1016/j.physb.2013.09.020Search in Google Scholar

[17] S.El-Rabaie, T.A.Taha, A.A.Higazy: Physica B: Condens. Matter429 (2013) 1. 10.1016/j.physb.2013.07.029Search in Google Scholar

[18] A.O.Ivanov, K.S.Evstropiev: Dokl. Akad. Nauk. SSSR.145 (1962) 797.Search in Google Scholar

[19] H.A.Sidek, H.R.Bahari, M.K.Halimah, W.M.Yunus: Int. J. Mol. Sci.13 (2012) 4632. 10.3390/ijms13044632Search in Google Scholar

[20] R.El-Mallawany: Mater. Chem. Phys.53 (1998) 93. 10.1016/S0254-0584(97)02041-5Search in Google Scholar

[21] T.Rouxel: Comptes Rendus Mécanique334 (2006) 743. 10.1016/j.crme.2006.08.001Search in Google Scholar

[22] A.Osaka, K.Takahashi, K.Ariyoshi: J. Non-Cryst. Solids70 (1985) 243. 10.1016/0022-3093(85)90323-0Search in Google Scholar

[23] R.Waesche, R.Brückner: J. Non-Cryst. Solids107 (1989) 309. 10.1016/0022-3093(89)90477-8Search in Google Scholar

[24] S.Rada, E.Culea, M.Rada: J. Non-Cryst. Solids356 (2010) 1277. 10.1016/j.jnoncrysol.2010.04.020Search in Google Scholar

[25] E.Culea, L.Pop, M.Bosca, T.Rusu, P.Pascuta, S.Rad: J. Phys. Conf. Ser.183 (2009) 012061. 10.1088/1742-6596/182/1/012061Search in Google Scholar

[26] E.Culea, L.Pop, M.Bosca: J. Alloys Compd.505 (2010). 754. 10.1016/j.jallcom.2010.06.135Search in Google Scholar

[27] S.Rada, M.Rada, E.Culea: J. Non-Cryst. Solids357 (2011) 62. 10.1016/j.jnoncrysol.2010.10.013Search in Google Scholar

[28] R.Vijay, P.R.Babu, B.V.Raghavaiah, P.M.V.Teja, M.Piasecki, N.Veeraiah, D.K.Rao: J. Non-Cryst. Solids386 (2014) 67. 10.1016/j.jnoncrysol.2013.11.035Search in Google Scholar

[29] S.Rada, E.Culea: J. Non-Cryst. Solids357 (2011) 1724. 10.1016/j.jnoncrysol.2011.01.017Search in Google Scholar

[30] M.Rada, L.Rus, S.Rada, E.Culea, T.Rusu: Spectrochim. Acta, Part A132 (2014) 533. 10.1016/j.saa.2014.04.195Search in Google Scholar PubMed

[31] M.Rada, L.Bolundut, M.Pica, M.Zagrai, S.Rada, E.Culea: J. Non-Cryst. Solids365 (2013) 105. 10.1016/j.jnoncrysol.2013.01.024Search in Google Scholar

[32] A.A.El-Moneim: Mater. Chem. Phys.70 (2001) 340. 10.1016/S0254-0584(00)00519-8Search in Google Scholar

[33] A.F.Wells: Structure Inorganic Chemistry, Clarendon Press, Oxford (1975).Search in Google Scholar

[34] M.Khanisanij, H.A.A.Sidek: Adv. Mater. Sci. Eng. (2014) ID 452830. 10.1155/2014/452830Search in Google Scholar

[35] A.C.Wright: Int. J. Appl. Glass Sci.6 (2015) 45. 10.1111/ijag.12113Search in Google Scholar

[36] Y.B.Saddeek: J. Non-Cryst. Solids357 (2011) 2920. 10.1016/j.jnoncrysol.2011.03.034Search in Google Scholar

[37] R.El-Mallawany: Mater. Chem. Phys.60 (1999) 103. 10.1016/S0254-0584(99)00082-6Search in Google Scholar

[38] Y.B.Saddeek: Mater. Chem. Phys.83 (2004) 222. 10.1016/j.matchemphys.2003.09.051Search in Google Scholar

[39] Y.D.Yiannopoulos, C.P.E.Varmsamis, E.I.Kamitsos: J. Non-Cryst. Solids293 (2001) 244. 10.1016/S0022-3093(01)00677-9Search in Google Scholar

[40] J.E.Shelby: Introduction to Glass Science and Technology, 2nd Ed., The Royal Society of Chemistry, Cambridge (2005). 10.1039/9781847551160-00001Search in Google Scholar

[41] R.El-Mallawany, M.D.Abdalla, I.A.Ahmed: Mater. Chem. Phys.109 (2008) 291. 10.1016/j.matchemphys.2007.11.040Search in Google Scholar

[42] Y.B.Saddeek, E.R.Shaaban, E.S.Moustafa, H.M.Moustafa: Physica B: Condens. Matter403 (2008) 2399. 10.1016/j.physb.2007.12.027Search in Google Scholar

[43] D.Linda, J.R.Duclère, T.Hayakawa, M.Dutreilh-Colas, T.Cardinal, A.Mirgorodsky, A.Kabadou, P.Thomas: J. Alloys Compd.561 (2013) 151. 10.1016/j.jallcom.2013.01.172Search in Google Scholar

[44] J.N.Ayuni, M.K.Halimah, Z.A.Talib, H.A.A.Sidek, W.M.Daud, A.W.ZaidanA.M.Khamirul: Mater. Sci. Eng.17 (2011) 012027. 10.1088/1757-899x/17/1/012027Search in Google Scholar

[45] N.Elkhoshkhany, A.Rafik, R.El-Mallawany, K.S.H. HumoudSharba: Ceram. Int.4 (2014) 11985. 10.1016/j.ceramint.2014.04.036Search in Google Scholar

[46] Y.B.Saddeek, I.S.Yahi, K.A.Alya, W.Dobrowolski: Solid State Sci.12 (2010) 1426. 10.1016/j.solidstatesciences.2010.05.023Search in Google Scholar

[47] V.Kamalaker, G.Upender, Ch.Ramesh, V.Chandra: Spectrochim. Acta, Part A89 (2012) 149. 10.1016/j.saa.2011.12.057Search in Google Scholar PubMed

Received: 2016-04-24
Accepted: 2016-08-11
Published Online: 2016-11-25
Published in Print: 2016-12-08

© 2016, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111437/html
Scroll to top button