Startseite The synthesis and electrochemical performance of Cu6Sn5 intermetallic nanoparticles as anode material in Li ion batteries
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The synthesis and electrochemical performance of Cu6Sn5 intermetallic nanoparticles as anode material in Li ion batteries

  • Hongxiao Zhao , Congxu Zhu , Jing Li , Fusheng Liu und Zhi Zheng
Veröffentlicht/Copyright: 3. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Cu6Sn5 intermetallic nanoparticles have been successfully prepared by a simple reduction method. The crystallinity and morphology of the synthesized products were characterized by means of X-ray diffraction and scanning electron microscopy, respectively. When used as anode material, Cu6Sn5 intermetallic nanoparticles demonstrated an initial discharge capacity of 3368.2 mAh · g−1 and stable capacities of 840 mAh · g−1 after 70 cycles between 0.05 and 2.5 V at a current density of 100 mA · g−1. The charge–discharge process of Cu6Sn5 intermetallic nanoparticles was also evaluated using cyclic voltammetry. The results indicated Cu6Sn5 intermetallic nanoparticles may be an ideal anode material for Li ion batteries.


*Correspondence address, Ms Hongxiao Zhao, Xuchang University, Xuchang, Henan, 461000, China, Tel.: +86-0374-2968783, E-mail:

References

[1] J.Xie, W.T.Song, G.S.Cao, T.J.Zhu, X.B.Zhao, S.C.Zhang: RSC Adv.4 (2014) 7703. 10.1039/C3RA44242JSuche in Google Scholar

[2] J.Z.Chen, L.Yang, S.H.Fang, Z.X.Zhang, S.Hirano: Electrochim. Acta105 (2013) 629. 10.1016/j.electacta.2013.05.052Suche in Google Scholar

[3] L.F.Bai, J.B.Zhu, X.D.Zhang, Y.Xie: J. Mater. Chem.22 (2012) 16957. 10.1039/c2jm30968hSuche in Google Scholar

[4] D.H.Lee, H.W.Shim, J.C.Kim, D.W.Kim: RSC Adv.4 (2014) 44563. 10.1039/C3RA43890BSuche in Google Scholar

[5] M.Kotobuki, N.Okada, K.Kanamura: Chem. Commun.47 (2011) 6144. 10.1039/c1cc10781jSuche in Google Scholar PubMed

[6] M.Latorre-Sanchez, A.Primo, H.Garcia: J. Mater. Chem.22 (2012) 21373. 10.1039/c2jm34978gSuche in Google Scholar

[7] C.D.Wang, Y.Li, Y.S.Chui, Q.H.Wu, X.F.Chen, W.J.Zhang: Nanoscale5 (2013) 10599. 10.1039/C2NR32506CSuche in Google Scholar

[8] Y.J.Zhang, L.Jiang, C.R.Wang: Nanoscale7 (2015) 11940. 10.1039/C4NR04707ASuche in Google Scholar

[9] J.Hassoun, G.A.Elia, S.Panero, B.Scrosati: J. Power Sources196 (2011) 7767. 10.1016/j.jpowsour.2011.04.028Suche in Google Scholar

[10] W.R.Osorio, J.E.Spinelli, C.R.M.Afonso, L.C.Peixoto, A.Garcia: Electrochim. Acta56 (2011) 8891. 10.1016/j.electacta.2011.07.114Suche in Google Scholar

[11] W.J.Cui, F.Wang, J.Wang, H.J.Liu, C.X.Wang, Y.Y.Xia: J. Power Sources196 (2011) 3633. 10.1016/j.jpowsour.2010.08.075Suche in Google Scholar

[12] A.Kitada, N.Fukuda, T.Ichii, H.Sugimura, K.Murase: Electrochim. Acta98 (2013) 239. 10.1016/j.electacta.2013.03.035Suche in Google Scholar

[13] M.Mladenov, P.Zlatilova, I.Dragieva, K.Klabunde: J. Power Sources162 (2006) 803. 10.1016/j.jpowsour.2005.07.017Suche in Google Scholar

[14] L.G.Xue, Z.H.Fu, Y.Yao, T.Huang, A.S.Yu: Electrochim. Acta55 (2010) 7310. 10.1016/j.electacta.2010.07.015Suche in Google Scholar

[15] S.B.Ni, J.J.Ma, X.H.Lv, X.L.Yang, L.L.Zhang: J. Mater. Chem. A2 (2014) 20506. 10.1039/C4TA03871ASuche in Google Scholar

Received: 2016-02-26
Accepted: 2016-05-12
Published Online: 2016-08-03
Published in Print: 2016-08-11

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111398/html
Button zum nach oben scrollen