Startseite Hydrogen storage kinetics of nanocrystalline and amorphous NdMg12-type alloy–Ni composites synthesized by mechanical milling
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hydrogen storage kinetics of nanocrystalline and amorphous NdMg12-type alloy–Ni composites synthesized by mechanical milling

  • Yanghuan Zhang , Songsong Cui , Xiping Song , Peilong Zhang , Yongguo Zhu und Ying Cai
Veröffentlicht/Copyright: 31. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanocrystalline and amorphous NdMg11Ni + x wt.% Ni (x = 100, 200) composites were synthesized by mechanical milling, and their gaseous and electrochemical hydrogen storage kinetic performances were systematically investigated. Hydrogen absorption and desorption properties were investigated by means of a Sievert apparatus and a differential scanning calorimeter connected with an H2 detector. Electrochemical hydrogen storage kinetics of the as-milled alloys were tested by an automatic galvanostatic system. Results show that increasing Ni content significantly improves gaseous and electrochemical hydrogen storage kinetics. The improved gaseous hydrogen storage kinetics of the alloys are ascribed to the decrease in hydrogen desorption activation energy caused by increasing Ni content and milling time.


*Correspondence address, Prof. Yanghuan Zhang, Department of Functional Material Research, Central Iron and Steel Research Institute, 76 Xueyuannan Road, Haidian District, Beijing 100081, China, Tel.: +86 10 62183115, Fax: +86 10 62187102, E-mail:

References

[1] S.Niaz, T.Manzoor, A.Hussain Pandith: Renew. Sust. Energ. Rev.50 (2015) 457. 10.1016/j.rser.2015.05.011Suche in Google Scholar

[2] S.Kalinichenka, L.Röntzsch, T.Riedl, T.Weißgärber, B.Kieback: Int. J. Hydrogen Energy36 (2011) 10808. 10.1016/j.ijhydene.2011.05.147Suche in Google Scholar

[3] G.Krystyna, D.Henryk: Int. J. Mater. Res.107 (2016) 103. 10.3139/146.111321Suche in Google Scholar

[4] Y.H.Zhang, Z.M.Yuan, T.Yang, Z.H.Hou, Y.Qi: Int. J. Mater. Res.106 (2015) 368. 10.3139/146.111194Suche in Google Scholar

[5] I.P.Jain, C.Lal, A.Jain: Int. J. Hydrogen Energy35 (2010) 5133. 10.1016/j.ijhydene.2009.08.088Suche in Google Scholar

[6] Y.Wang, S.Z.Qiao, X.Wang: Int. J. Hydrogen Energy33 (2008) 5066. 10.1016/j.ijhydene.2008.06.038Suche in Google Scholar

[7] S.Kalinichenka, L.Röntzsch, T.Riedl, T.Gemming, T.Weißgärber, B.Kieback: Int. J. Hydrogen Energy36 (2011) 1592. 10.1016/j.ijhydene.2010.10.099Suche in Google Scholar

[8] M.Y.Song, S.N.Kwon, H.R.Park, S.H.Hong: Int. J. Hydrogen Energy36 (2011) 13587. 10.1016/j.rser.2015.05.011Suche in Google Scholar

[9] A.Zaluska, L.Zaluski, J.O.Ström-Olsen: J. Alloys Compd.289 (1999) 197. 10.1016/j.ijhydene.2011.05.147Suche in Google Scholar

[10] T.Spassov, V.Rangelova, N.Neykov: J. Alloys Compd.334 (2002) 219. 10.1016/S0925-8388(01)01745-5Suche in Google Scholar

[11] H.Gu, Y.Zhu, L.Li: Int. J. Hydrogen Energy33 (2008) 2970. 10.1016/j.ijhydene.2008.04.011Suche in Google Scholar

[12] A.M.JorgeJr., E.Prokofiev, G.F.de Lima, E.Rauch, M.Veron, W.J.Botta, M.Kawasaki, T.G.Langdon: Int. J. Hydrogen Energy38 (2013) 8306. 10.1016/j.ijhydene.2013.03.158Suche in Google Scholar

[13] H.Shao, J.Matsuda, H.W.Li, E.Akiba, A.Jain, T.Ichikawa, Y.Kojima: Int. J. Hydrogen Energy38 (2013) 7070. 10.1016/j.ijhydene.2013.04.026Suche in Google Scholar

[14] H.W.Wang, S.D.Chyou, S.H.Wang, P.K.Chiu, C.C.Yen, B.Y.Chen, M.W.Yang, H.C.Tien, N.N.Huang: J. Alloys Compd.491 (2010) 623. 10.1016/j.jallcom.2009.11.025Suche in Google Scholar

[15] N.Cui, P.He, J.L.Luo: Acta Mater.47 (1999) 3737. 10.1016/S1359-6454(99)00249-9Suche in Google Scholar

[16] P.Delchev, P.Solsona, B.Drenchev, N.Drenchev, T.Spassov, M.D.Baró: J. Alloys Compd.388 (2005) 98. 10.1016/j.jallcom.2004.07.001Suche in Google Scholar

[17] C.D.Yim, B.S.You, Y.S.Na, J.S.Bae: Catal. Today120 (2007) 276. 10.1016/j.cattod.2006.09.020Suche in Google Scholar

[18] Á.Révész, M.Gajdics, T.Spassov: Int. J. Hydrogen Energy38 (2013) 8342. 10.1016/j.ijhydene.2013.04.128Suche in Google Scholar

[19] M.Sherif El-Eskandarany: Mechanical Alloying (2nd Ed.), Elsevier Inc., USA (2015). 10.1016/B978-1-4557-7752-5.00004-8Suche in Google Scholar

[20] B.Corain, G.Schmid, N.Toshima: Metal Nanoclusters in Catalysis and Materials Science, Elsevier B.V., Netherlands (2008). 10.1016/B978-044453057-8.50008-8Suche in Google Scholar

[21] M.Abdellaoui, S.Mokbli, F.Cuevas, M.Latroche, A.Percheron-Guégan, H.Zarrouk: J. Alloys Compd.356–357 (2003) 557. 10.1016/S0925-8388(03)00119-1Suche in Google Scholar

[22] R.V.Denys, A.A.Poletaev, J.P.Maehlen, J.K.Solberg, B.P.Tarasov, V.A.Yartys: Int. J. Hydrogen Energy37 (2012) 5710. 10.1016/j.ijhydene.2011.12.133Suche in Google Scholar

[23] R.V.Denys, A.A.Poletaev, J.K.Solberg, B.P.Tarasov, V.A.Yartys: Acta Mater.58 (2010) 2510. 10.1016/j.actamat.2009.12.037Suche in Google Scholar

[24] T.Sadhasivam, M.S.L.Hudson, S.K.Pandey, A.Bhatnagar, M.K.Singh, K.Gurunathan, O.N.Srivastava: Int. J. Hydrogen Energy38 (2013) 7353. 10.1016/j.ijhydene.2013.04.040Suche in Google Scholar

[25] K.J.Laidler: Pure Appl. Chem.68 (1996) 149. 10.1351/pac199668010149Suche in Google Scholar

[26] T.Kimura, H.Miyaoka, T.Ichikawa, Y.Kojima: Int. J. Hydrogen Energy38 (2013) 13728. 10.1016/j.ijhydene.2013.08.043Suche in Google Scholar

[27] M.C.Weinberg, D.P.BirnieIII, V.A.Shneidman: J. Non-Cryst. Solids219 (1997) 89. 10.1016/S0022-3093(97)00261-5Suche in Google Scholar

[28] Y.Zhou, W.S.Lin, F.Yang, W.P.Fang, J.L.Huang, Q.B.Li: Chem. Phys.441 (2014) 23. 10.1016/j.chemphys.2014.07.001Suche in Google Scholar

[29] T.Liu, Y.R.Cao, C.G.Qin, W.S.Chou, X.G.Li: J. Power Sources246 (2014) 277. 10.1016/j.jpowsour.2013.07.087Suche in Google Scholar

[30] H.E.Kissinger: Anal. Chem.29 (1957) 1702. 10.1021/ac60131a045Suche in Google Scholar

[31] M.Baricco, M.W.Rahman, S.Livraghi, A.Castellero, S.Enzo, E.Giamello: J. Alloys Compd.536 (2012) S216. 10.1016/j.jallcom.2011.12.008Suche in Google Scholar

[32] X.Y.Zhao, Y.Ding, L.Q.Ma, L.Y.Wang, M.Yang, X.D.Shen: Int. J. Hydrogen Energy33 (2008) 6727. 10.1016/j.ijhydene.2008.08.030Suche in Google Scholar

[33] G.Zheng, B.N.Popov, R.E.White: J. Electrochem. Soc.142 (1995) 2695. 10.1149/1.2050076Suche in Google Scholar

[34] N.Kuriyama, T.Sakai, H.Miyamura, I.Uehara, H.Ishikawa, T.Iwasaki: J. Alloys Compd.202 (1993) 183. 10.1016/0925-8388(93)90538-XSuche in Google Scholar

[35] Y.Wu, W.Han, S.X.Zhou, M.V.Lototsky, J.K.Solberg, V.A.Yartys: J. Alloys Compd.466 (2008) 176. 10.1016/j.jallcom.2007.11.128Suche in Google Scholar

[36] M.Y.Song, C.D.Yim, S.N.Kwon, J.S.Bae, S.H.Hong: Int. J. Hydrogen Energy33 (2008) 87. 10.1016/j.ijhydene.2008.08.030Suche in Google Scholar

[37] M.Anik: J. Alloys Compd.491 (2010) 565. 10.1016/j.jallcom.2009.11.004Suche in Google Scholar

[38] Y.H.Zhang, Z.M.Yuan, T.Yang, Y.Qi, D.L.Zhao: J. Solid State Electrochem.19 (2015) 1187. 10.1007/s10008-014-2736-0Suche in Google Scholar

Received: 2015-12-26
Accepted: 2016-04-05
Published Online: 2016-08-31
Published in Print: 2016-07-14

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111389/pdf
Button zum nach oben scrollen