Startseite Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel

  • Liqiu Guo , Binjie Yang und Sixiao Qin
Veröffentlicht/Copyright: 5. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper demonstrates the hydrogen-induced phase transformation and the associated pitting nucleation sites of 2507 duplex stainless steel using scanning Kelvin probe force microscopy and magnetic force microscopy. The low potential sites in Volta potential images, which are considered as the pitting nucleation sites, are strongly dependent on the hydrogen-induced phase transformation. They firstly initiate on the magnetic martensite laths in the austenite phase or at the ferrite/austenite boundaries, and then appear near the needle-shaped microtwins in the ferrite phase, because of the difference in physicochemical properties of hydrogen-induced phase transformation microstructures.


*Correspondence address, Dr. Liqiu Guo, Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China. Tel.: +86-10-62332345, Fax: +86-10-62332345, E-mail:

References

[1] D.E.Nelson, W.A.Baeslack, J.C.Lippold: Mater. Charact.39 (1997) 467. 10.1016/S1044-5803(97)00140-XSuche in Google Scholar

[2] K.Ravindranath, S.N.Mailhotra: Corros. Sci.37 (1995) 121. 10.1016/0010-938X(94)00120-USuche in Google Scholar

[3] V.Muthupandi, P.B.Srinivasan, S.K.Seshadri, S.Sundaresan: Mater. Sci. Eng. A358 (2003) 9. 10.1016/S0921-5093(03)00077-7Suche in Google Scholar

[4] S.Sadewasser, T.Glatzel, M.Rusu, A.Jäger-Waldau, M.Ch.Lux-Steiner: Appl. Phys. Lett.80 (2002) 2979. 10.1063/1.1471375Suche in Google Scholar

[5] L.Q.Guo, Y.Bai, B.Z.Xu, W.Pan, J.X.Li, L.J.Qiao: Corros. Sci.70 (2013) 140. 10.1016/j.corsci.2013.01.022Suche in Google Scholar

[6] A.Głowacka, W.A.Światnicki: Mater. Chem. Phys.81 (2003) 496. 10.1016/S0254-0584(03)00054-3Suche in Google Scholar

[7] A.Głowacka, M.J.Wozniak, W.A.Światnicki: J. Alloys Compd.404 (2005) 595. 10.1016/j.jallcom.2005.02.084Suche in Google Scholar

[8] A.Głowacka, M.J.Woźniak, G.Nolze, W.A.Świątnicki: Solid State Phenom.112 (2006) 133. 10.4028/www.scientific.net/SSP.112.133Suche in Google Scholar

[9] M.Jonsson, D.Thierry, N.LeBozec: Corros. Sci.48 (2006) 1193. 10.1016/j.corsci.2005.05.008Suche in Google Scholar

[10] B.S.Tanem, G.Svenningsen, J.Mardalen: Corros. Sci.47 (2005) 1506. 10.1016/j.corsci.2004.07.029Suche in Google Scholar

[11] P.Schmutz, G.S.Frankel: J. Electrochem. Soc.145 (1998) 2285. 10.1149/1.1838633Suche in Google Scholar

[12] P.Leblanc, G.S.Frankel: J. Electrochem. Soc.149 (2002) B239. 10.1149/1.1471546Suche in Google Scholar

[13] M.Li, L.Q.Guo, L.J.Qiao, Y.Bai: Corros. Sci.60 (2012) 76. 10.1016/j.corsci.2012.04.010Suche in Google Scholar

[14] M.Femenia, C.Canalias, J.Pan, C.Leygraf: J. Electrochem. Soc.150 (2003) B274. 10.1149/1.1572482Suche in Google Scholar

[15] N.Sathirachinda, R.Gubner, J.Pan, U.Kivisäkk: Electrochem. Solid-State Lett.11 (2008) C41. 10.1149/1.2912601Suche in Google Scholar

[16] N.Sathirachinda, R.Pettersson, J.Pan: Corros. Sci.51 (2009) 1850. 10.1016/j.corsci.2009.05.012Suche in Google Scholar

[17] N.Sathirachinda, R.Pettersson, S.Wessman, J.Pan: Corros. Sci.52 (2010) 179. 10.1016/j.corsci.2009.08.057Suche in Google Scholar

[18] L.Q.Guo, M.Li, X.L.Shi, Y.Yan, X.Y.Li, L.J.Qiao: Corros. Sci.53 (2011) 3733. 10.1016/j.corsci.2011.07.019Suche in Google Scholar

[19] A.Dias, M.S.Andrade: Appl. Surf. Sci.109 (2000) 161. 10.1016/S0169-4332(00)00144-6Suche in Google Scholar

[20] B.R.A.Neves, M.S.Andrade: Appl. Phys. Lett.74 (1999) 2090. 10.1063/1.123767Suche in Google Scholar

[21] M.Stratmann, H.Steckel: Corros. Sci.30 (1990) 681. 10.1016/0010-938X(90)90032-ZSuche in Google Scholar

[22] B.Maachi, C.Pirri, A.Mehdaoui, N.E.Hakiki, J.L.Bubendorff: Corros. Sci.53 (2011) 984. 10.1016/j.corsci.2010.11.031Suche in Google Scholar

[23] H.B.Michaelson: J. Appl. Phys.48 (1977) 4729. 10.1063/1.323539Suche in Google Scholar

[24] W.Li, D.Y.Li: Appl. Surf. Sci.240 (2005) 388. 10.1016/j.apsusc.2004.07.017Suche in Google Scholar

[25] G.S.Frankel, M.Stratmann, M.Rohwerder, A.Michalik, B.Michalik, B.Maier, J.Dora, M.Wicinki: Corros. Sci.49 (2007) 2021. 10.1016/j.corsci.2006.10.017Suche in Google Scholar

[26] M.Stratmann: Corros. Sci.27 (1987) 869. 10.1016/0010-938X(87)90043-6Suche in Google Scholar

[27] A.Davoodi, J.Pan, C.Leygraf, S.Norgren: J. Electrochem. Soc.155 (2008) C211. 10.1149/1.2883737Suche in Google Scholar

[28] J.G.Yu, J.L.Luo, P.R.Norton: Electrochim. Acta47 (2002) 4019. 10.1016/S0013-4686(02)00410-3Suche in Google Scholar

[29] C.C.Xu, G.Hu, Y.N.Wing: Mater. Sci.40 (2004) 252. 10.1007/s11003-005-0052-7Suche in Google Scholar

[30] A.Cigada, B.Mazza, P.Pedefeeri: Corros. Sci.6 (1982) 22. 10.1016/0010-938X(82)90055-5Suche in Google Scholar

[31] A.Szummer, E.Jezierska, K.Lublinska: J. Alloys Compd.293 (1999) 356. 10.1016/S0925-8388(99)00401-6Suche in Google Scholar

[32] E.Owczarek, T.Zakroczymski: Acta Mater.48 (2000) 3059. 10.1016/S1359-6454(00)00122-1Suche in Google Scholar

[33] J.H.He, X.Y.Tang: Acta Metall. Sinica25 (1989) A042A047.Suche in Google Scholar

Received: 2015-07-20
Accepted: 2015-09-28
Published Online: 2016-02-05
Published in Print: 2016-02-10

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111320/html
Button zum nach oben scrollen