Nitrogen ion bombardment of multilayer graphene films grown on Cu foil by LPCVD
-
Azadeh Jafari
, Zohreh Ghorannevis , Mahmood Ghoranneviss and Sara Karimi
Abstract
Multilayer graphene films were synthesized on copper foil by means of low pressure chemical vapor deposition and characterized using Raman spectroscopy. Low energy nitrogen bombardment was performed to form N-doped graphene, which is a metal catalyst method to induce nitrogen disorder in the carbon network. In order to investigate the effect of the nitrogen bombardment on graphene, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy are used. Analysis before and after the bombardment reveals that nitrogen doping of graphene is performed successfully by this method.
References
[1] K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, Y.Zhang, S.V.Dubonos, I.V.Grigorieva, A.A.Firsov: Science306 (2004) 666. 10.1126/science.1102896Search in Google Scholar PubMed
[2] Y.M.Lin, K.A.Jenkins, A.V.Garcia, J.P.Small, D.B.Farmer, P.Avouris: Nano Lett.9 (2008) 422. 10.1021/nl803316hSearch in Google Scholar PubMed
[3] X.Wang, L.Zhi, K.Mullen: Nano Lett.8 (2007) 323. 10.1021/nl072838rSearch in Google Scholar PubMed
[4] F.Schedin, A.K.Geim, S.V.Morozov, E.W.Hill, P.Blake, M.I.Katsnelson, K.S.Novoselov: Nat. Mater.6 (2007) 652. 10.1038/nmat1967Search in Google Scholar PubMed
[5] S.Bae, H.Kim, Y.Lee, X.Xu: Nat. Nanotechnol.5 (2010) 574. 10.1038/nnano.2010.132Search in Google Scholar PubMed
[6] A.B.Bourlinos, D.Gournis, D.Petridis, T.Szabó, A.Szeri, I.Dékány: Langmuir15 (2003) 6050. 10.1021/la026525hSearch in Google Scholar
[7] J.Kraus, S.Böcklein, R.Reichelt, S.Günther, B.Santos, T.O.Mentes, A.Locatelli: Carbon64 (2013) 377. 10.1016/j.carbon.2013.07.090Search in Google Scholar
[8] J.Zhang, P.Hu, X.Wang, Z.Wang: Chem. Phys. Lett.536 (2012) 123. 10.1016/j.cplett.2012.04.001Search in Google Scholar
[9] A.Kumar, A.A.Voevodin, D.Zemlyanov, D.N.Zakharov, T.S.Fisher: Carbon50 (2012) 1546. 10.1016/j.carbon.2011.11.033Search in Google Scholar
[10] M.Sarno, C.Cirillo, R.Piscitelli, P.Ciambelli: J. Mol. Catal. A366 (2013) 303. 10.1016/j.molcata.2012.10.009Search in Google Scholar
[11] S.Yuyan, S.Zhang, H.M.Engelhard, L.Guosheng, S.Guocheng: J. Mater. Chem.20 (2010) 7491. 10.1039/c0jm00782jSearch in Google Scholar
[12] B.Jianga, C.Tian, L.Wang, L.Sun, C.Chen: Appl. Surf. Sci.258 (2012) 3438. 10.1016/j.apsusc.2011.11.091Search in Google Scholar
[13] Y.Wang, Y.Shao, D.W.Matson, J.Li, Y.Lin: ACS Nano4 (2010) 1790. 10.1021/nn100315s.Search in Google Scholar PubMed
[14] D.Usachov, O.Vilkov, A.Gruneis, D.Haberer, A.Fedorov, V.K.Adamchuk: Nano Lett.12 (2011) 5401. 10.1021/nl2031037Search in Google Scholar PubMed
[15] D.C.Wei, Y.Q.Liu, Y.Wang, H.L.Zhang, L.P.Yu, G.Huang: Nano Lett.5 (2009) 1752. 10.1021/nl803279tSearch in Google Scholar PubMed
[16] L.Zhang, Y.Yifan, D.Cheng, W.Zhang, H.Pan, J.Zhu: Carbon62 (2013) 365. 10.1016/j.carbon.2013.06.018Search in Google Scholar
[17] R.J.Koch, M.Weser, W.Zhao, F.Vines, K.Gotterbarm, S.M.Kozlov: Phys. Rev. B7 (2012) 075401. 10.1103/PhysRevB.86.075401Search in Google Scholar
[18] S.C.Hern, M.S.H.Boutilier, J.C.Idrobo, Y.Song, J.Kong, T.Laoui, M.Atieh, R.Karnik: Nano Lett.14 (2014) 1234. 10.1021/nl404118fSearch in Google Scholar PubMed
[19] M.M.Ugeda, I.Brihuega, F.Guinea, J.M.Gómez-Rodríguez: Phys. Rev. Lett.104 (2010) 096804. 10.1103/PhysRevLett.104.096804Search in Google Scholar PubMed
[20] M.M.Ugeda, D.Fernández-Torre, I.Brihuega, P.Pou, A.J.Martínez-Galera, R.Pérez, J.M.Gómez-Rodríguez: Phys. Rev. Lett.107 (2011) 116803. 10.1103/PhysRevLett.107.116803Search in Google Scholar PubMed
[21] S.Standop, O.Lehtinen, C.Herbig, G.Lewes-Malandrakis, F.Craes, J.Kotakoski, T.Michely, A.Krasheninnikov, C.Busse: Nano Lett.13 (2013) 1948. 10.1021/nl304659nSearch in Google Scholar PubMed
[22] E.H.Åhlgren, S.K.Hämäläinen, O.Lehtinen, P.Liljeroth, J.Kotakoski: Phys. Rev. B88 (2013) 155419. 10.1103/PhysRevB.88.155419Search in Google Scholar
[23] H.Y.Cun, M.Iannuzzi, A.Hemmi, J.Osterwalder, T.Greber: ACS Nano8 (2014) 7423. 10.1021/nn502645wSearch in Google Scholar PubMed
[24] W.Zhao, O.Hofert, K.Gotterbarm, J.F.Zhu, C.Papp, H.P.Steinruck: J. Phys. Chem. C7 (2012) 5062. 10.1021/jp209927mSearch in Google Scholar
[25] R.J.Koch, M.Weser, W.Zhao, F.Vines, K.Gotterbarm, S.M.Kozlov: Phys. Rev. B88 (2012) 075401. 10.1103/PhysRevB.86.075401Search in Google Scholar
[26] A.Kumar, A.Ganguly, P.Papakonstantinou: J. Phys. Condens. Matter.24 (2012) 235503. 10.1088/0953-8984/24/23/235503Search in Google Scholar PubMed
[27] F.Xu, M.Minniti, P.Barone, A.Sindona, A.Bonanno, A.Oliva: Carbon46 (2008) 1489. 10.1016/j.carbon.2008.06.047Search in Google Scholar
[28] K.J.Kim, S.Yang, Y.Park, M.Lee, B.S.Kim, H.Lee: J. Phys. Chem. C117 (2013) 2129. 10.1021/jp309964mSearch in Google Scholar
[29] M.S.Dresselhaus, R.Kalish: Ion Implantation in Diamond, Graphite and Related Materials, Springer-Verlag, Berlin (1992). 10.1007/978-3-642-77171-2Search in Google Scholar
[30] A.Ferrari, J.Meyer, V.Scardaci, C.Casiraghi, M.Lazzeri, F.Mauri, S.Piscanec, D.Jiang, K.Novoselov, S.Roth, A.Geim: Phys. Rev. Lett.97 (2006) 187401. 10.1103/PhysRevLett.97.187401Search in Google Scholar PubMed
[31] D.Graf, F.Molitor, K.Ensslin, C.Stampfer, A.Jungen, C.Hierold, L.Wirtz: Nano Lett.7 (2007) 238. 10.1103/PhysRevLett.97.187401Search in Google Scholar PubMed
[32] A.C.Ferrari, J.Robertson: Phys. Rev. B61 (2000) 14095. 10.1103/PhysRevB.61.14095Search in Google Scholar
[33] P.Zhao, D.S.Liu, S.J.Li, G.Chen: Phys. Lett. A377 (2013) 1134. 10.1016/j.physleta.2013.02.048Search in Google Scholar
[34] P.Zhao, D.Liu, S.Li, G.Chen: Chem. Phys. Lett.554 (2012) 172. 10.1016/j.cplett.2012.10.045Search in Google Scholar
[35] B.M.Terrones, P.Redlich, N.Grobert, S.Trasobares, W.Hsu, H.Terrones: Adv. Mater.11 (1999) 655. 10.1002/(SICI)1521Search in Google Scholar
[36] C.Ronning, H.Feldermann, R.Merk, H.Hofsass, P.Reinke, J.U.Thiele: Phys. Rev. B58 (1998) 2207. 10.1103/PhysRevB.58.2207Search in Google Scholar
[37] W.J.Gammon, O.Kraft, A.C.Reilly, B.C.Holloway: Carbon41 (2003) 1917. 10.1016/S0008-6223(03)00170-2Search in Google Scholar
[38] R.Czerw, M.Terrones, J.Charlier, X.Blase, B.Foley, M.Ru: Nano Lett.1 (2001) 457. 10.1021/nl015549qSearch in Google Scholar
[39] L.Chan, K.Hong, D.Xiao, T.Lin, S.Lai, W.Hsieh: Phys. Rev. B70 (2004) 125408. 10.1103/PhysRevB.70.125408Search in Google Scholar
[40] J.R.Pels, F.Kapteijn, J.A.Moulijn, Q.Zhu, K.M.Thomas: Carbon33 (1995) 1641. 10.1016/0008-6223(95)00154-6Search in Google Scholar
[41] X.B.Wang, Y.Q.Liu, D.B.Zhu, L.Zhang, H.Z.Ma, N.Yao, B.L.Zhang: J. Phys. Chem. B106 (2002) 2186. 10.1021/jp013007rSearch in Google Scholar
[42] D.Wei, Y.Liu, Y.Wang, H.Zhang, L.Huang, G.Yu: Nano Lett.9 (2009) 1752. 10.1021/nl803279t.Search in Google Scholar PubMed
[43] M.Song, S.Ameen, M.S.Akhtar: Mater. Res. Bull.48 (2013) 4538. 10.1016/j.materresbull.2013.07.045Search in Google Scholar
[44] E.H.Ahlgren, J.Kotakoski, A.V.Krasheninnikov: Phys. Rev. B83 (2011) 115424. 10.1103/PhysRevB.83.115424Search in Google Scholar
[45] O.Lehtinen, J.Kotakoski, A.V.Krasheninnikov, A.Tolvanen, K.Nordlund: J. Phys. Rev. B81 (2010) 153401. 10.1103/PhysRevB.81.153401Search in Google Scholar
[46] D.Marton, H.Bu, K.Boyd, S.Todorov, A.A.Bayati, J.Rabalais: Appl. Surf. Sci.326 (1995) L489. 10.1016/0039-6028(95)00002-XSearch in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process
- Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel
- Characterization and tribocorrosion behavior of sputtered NiTi coatings
- Further application of the cleavage fracture stress model for estimating the T0 of highly embrittled ferritic steels
- On the prediction of long term creep strength of creep resistant steels
- The debonding toughness in layered particulate polymer composites
- Structure and properties of mesophase pitch-derived carbon foams reinforced by mesocarbon microbeads
- Thermodynamic properties over (Ni2Te3O8 + NiTe2O5) in the Ni–Te–O system: Transpiration thermogravimetric and Knudsen effusion mass spectrometric studies
- Effect of green preform composition, temperature and duration conditions on microstructure and performance of Al-5Ti-0.2C master alloy
- Nitrogen ion bombardment of multilayer graphene films grown on Cu foil by LPCVD
- Short Communications
- Correlation of fracture features with mechanical properties as a function of strain rate in zirconium alloys
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process
- Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel
- Characterization and tribocorrosion behavior of sputtered NiTi coatings
- Further application of the cleavage fracture stress model for estimating the T0 of highly embrittled ferritic steels
- On the prediction of long term creep strength of creep resistant steels
- The debonding toughness in layered particulate polymer composites
- Structure and properties of mesophase pitch-derived carbon foams reinforced by mesocarbon microbeads
- Thermodynamic properties over (Ni2Te3O8 + NiTe2O5) in the Ni–Te–O system: Transpiration thermogravimetric and Knudsen effusion mass spectrometric studies
- Effect of green preform composition, temperature and duration conditions on microstructure and performance of Al-5Ti-0.2C master alloy
- Nitrogen ion bombardment of multilayer graphene films grown on Cu foil by LPCVD
- Short Communications
- Correlation of fracture features with mechanical properties as a function of strain rate in zirconium alloys
- DGM News
- DGM News