Startseite Technik Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite

  • Omer Guler EMAIL logo
Veröffentlicht/Copyright: 27. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, carbon nanotubes, which were produced by using chemical vapour deposition and mechano-thermal methods, were combined with zinc oxide matrix at different ratios and the effects of the nanotubes on electrical and optical properties of zinc oxide were examined. It was observed that electrical conductivity of zinc oxide at room temperature increased with the increase in the reinforcement rate both in carbon nanotube reinforced samples produced by using chemical vapour deposition and those produced by using the mechano-thermal method. Carbon nano-tube reinforced samples produced by using chemical vapour deposition yielded relatively better results for the same reinforcement rate.


Asst. Prof. Ömer Güler Department of Metallurgy and Materials Engineering Fırat University Elazığ 23119 Turkey Tel.: +90 5337691018 E-mail: omerguler82@yahoo.com

References

[1] S. Iijima: Nature 354 (1991) 56–58. DOI:10.1038/354056a010.1038/354056a0Suche in Google Scholar

[2] M. Terrones, W.K. Hsu, H.W. Kroto, D.R. Walton: Top. Curr. Chem. 199 (1999) 189–234. DOI:10.1007/3-540-68117-5_610.1007/3-540-68117-5_6Suche in Google Scholar

[3] Y. Chen, in: L. Dai (Ed.), Carbon Nanotechnology, Elsevier, UK (2006) 53. DOI:10.1016/B978-044451855-2/50006-110.1016/B978-044451855-2/50006-1Suche in Google Scholar

[4] M.F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, R.S. Ruoff: Science 287 (2000) 637–640. DOI:10.1126/science.287.5453.63710.1126/science.287.5453.637Suche in Google Scholar PubMed

[5] M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, R. Superfine: Nature 389 (1997) 582–584. DOI:10.1038/3928210.1038/39282Suche in Google Scholar PubMed

[6] M.M.J. Treacy, T.W. Ebbesen, T.M. Gibson: Nature 381 (1996) 678–680. DOI:10.1038/381678a010.1038/381678a0Suche in Google Scholar

[7] S. Iijima, C. Brabec, A. Maiti, J. Bernholc: J. Chem. Phys. 104 (1996) 2089. DOI:10.1063/1.47096610.1063/1.470966Suche in Google Scholar

[8] R.S. Ruoff, D.C. Lorents: Carbon 33 (1995) 925–930. DOI:10.1016/0008-6223(95)00021-510.1016/0008-6223(95)00021-5Suche in Google Scholar

[9] L. Vaccarini, C. Goze, L. Henrard, E. Hernandez, P. Bernier, A. Rubio: Carbon 38 (2000) 1681–1690. DOI:10.1016/S0008-6223(99)00293-610.1016/S0008-6223(99)00293-6Suche in Google Scholar

[10] O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, G. Yue: Acc. Chem. Res. 35 (2002) 1045–1053. DOI:10.1021/ar010162f10.1021/ar010162fSuche in Google Scholar PubMed

[11] E.T. Thostenson, Z. Ren, T.W. Chou: Compos. Sci. Technol. 61 (2001) 1899–1912. DOI:10.1016/S0266-3538(01)00094-X10.1016/S0266-3538(01)00094-XSuche in Google Scholar

[12] M. Estili, A. Kawasaki, H. Sakamoto, Y. Mekuchi, M. Kuno, T. Tsukada: Acta Mater. 56 (2008) 4070–4079. DOI:10.1016/j.actamat.2008.04.02910.1016/j.actamat.2008.04.029Suche in Google Scholar

[13] C.Y. Wang, S. Adhikari: Phys. Lett. A 375 (2011) 2171–2175. DOI:10.1016/j.physleta.2010.11.00610.1016/j.physleta.2010.11.006Suche in Google Scholar

[14] C.T. Hsieh, Y.T. Lin, W.Y. Chen, J.L. Wei: Powder Technol. 192 (2009) 16–22. DOI:10.1016/j.powtec.2008.11.00410.1016/j.powtec.2008.11.004Suche in Google Scholar

[15] R. Andrews, D. Jacques, D. Qian, E.C. Dickey: Carbon 39 (2001) 1681–1687. DOI:10.1016/S0008-6223(00)00301-810.1016/S0008-6223(00)00301-8Suche in Google Scholar

[16] Y. Chen, J. Fitzgerald, L.T. Chadderton, L. Chaffron: Mater. Sci. Forum 312–314 (1999) 375–378.10.4028/www.scientific.net/MSF.312-314.375Suche in Google Scholar

[17] J. Tauc: Amorphous and Liquid Semiconductors, PlenumPress, New York (1974). DOI:10.1007/978-1-4615-8705-710.1007/978-1-4615-8705-7Suche in Google Scholar

[18] C. Aydın, M.S. Abd El-sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu: Opt. Laser Technol. 48 (2013) 447–452. DOI:10.1016/j.optlastec.2012.11.00410.1016/j.optlastec.2012.11.004Suche in Google Scholar

[19] Y. Liu, X. Yin, L. Kong, X. Liu, F. Ye, L. Zhang, L. Cheng: Carbon 64 (2013) 541–544. DOI:10.1016/j.carbon.2013.07.03910.1016/j.carbon.2013.07.039Suche in Google Scholar

[20] S. Sarkar, P.K. Das: Ceram. Int. 40 (2014) 2723–2729. DOI:10.1016/j.ceramint.2013.10.04910.1016/j.ceramint.2013.10.049Suche in Google Scholar

[21] K. Woan, G. Pyrgiotakis, W. Sigmund: Adv. Mater. 21 (2009) 2233–2239. DOI:10.1002/adma.20080273810.1002/adma.200802738Suche in Google Scholar

Received: 2014-06-17
Accepted: 2015-01-12
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Artikel in diesem Heft

  1. Frontmatter
  2. Original Contributions
  3. Study on the σ-phase precipitation of SAF2906 duplex stainless steel
  4. Recovery, recrystallization and diffusion in cold-rolled Ni
  5. Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
  6. Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
  7. Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
  8. Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
  9. Non-uniform sintering of yttria-stabilized zirconia powder compact
  10. Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
  11. Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
  12. Local structure of explosively welded titanium–stainless steel bimetal
  13. Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
  14. Short Communications
  15. Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
  16. Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
  17. The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
  18. Book Review / Buchbesprechungen
  19. Nanowerkstoffe für Einsteiger
  20. Personal
  21. Conferences
Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111218/pdf
Button zum nach oben scrollen