Recovery, recrystallization and diffusion in cold-rolled Ni
-
Margarita Shepelenko
Abstract
Recovery and recrystallization processes in cold-rolled Ni are investigated. While recrystallization and grain growth at temperatures above 700 K lead to a significant (threefold) decrease in micro-hardness, recovery at 600 K is shown to cause a measurable micro-hardness increase. This increase in micro-hardness is confirmed by atomic force microscopy observations of Vickers indents, and it is correlated with the vacancy-annihilation peak of the calorimetric signal. Diffusion of impurity–vacancy complexes to the dislocation cores and the resulting pinning of dislocations are surmised to contribute to the measured micro-hardness increase. Self-diffusion along interfaces in cold-rolled and partially recrystallized Ni samples is measured employing the radiotracer serial sectioning technique. Diffusion rates similar to those of general high-angle grain boundaries in well-annealed coarse-grained Ni polycrystals are observed. The results imply that the diffusion rate along the stationary recrystallization front, i. e. the interfaces separating the recrystallized and the as-deformed regions of the material, is similar to that along a general high-angle grain boundary.
References
[1] Yu.R. Kolobov, G.P. Grabovetzkaya, K.V. Ivanov, M.B. Ivanov: Interface Sci. 10 (2002) 31. DOI:10.1023/A:101512892815810.1023/A:1015128928158Suche in Google Scholar
[2] Y. Amouyal, S.V. Divinski, Y. Estrin, E. Rabkin: Acta Mater. 55 (2007) 5968. DOI:10.1016/j.actamat.2007.07.02610.1016/j.actamat.2007.07.026Suche in Google Scholar
[3] S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, G. Wilde: Acta Mater. 59 (2011) 1974. DOI:10.1016/j.actamat.2010.11.06310.1016/j.actamat.2010.11.063Suche in Google Scholar
[4] D. Prokoshkina, L. Klinger, A. Moros, G. Wilde, E. Rabkin, S.V. Divinski: Acta Mater. 62 (2014) 314. DOI:10.1016/j.actamat.2014.02.00210.1016/j.actamat.2014.02.002Suche in Google Scholar
[5] D. Prokoshkina, L. Klinger, A. Moros, G. Wilde, E. Rabkin, S.V. Divinski: Scr. Mater. (2015). DOI:10.1016/j.scriptamat.2015.01.02710.1016/j.scriptamat.2015.01.027Suche in Google Scholar
[6] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev: Mater. Sci. Eng. A 540 (2012) 1. DOI:10.1016/j.msea.2012.01.08010.1016/j.msea.2012.01.080Suche in Google Scholar
[7] G. Wilde, J. Ribbe, G. Reglitz, M. Wegner, H. Rösner, Y. Estrin, M.J. Zehetbauer, D. Setman, S.V. Divinski: Adv. Eng. Mater. 12 (2010) 758. DOI:10.1002/adem.20090033310.1002/adem.200900333Suche in Google Scholar
[8] V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok: Int. J. Hydrogen Energy 34 (2009) 6320. DOI:10.1016/j.ijhydene.2009.05.13610.1016/j.ijhydene.2009.05.136Suche in Google Scholar
[9] S.V. Divinski, G. Wilde, E. Rabkin, Y. Estrin: Adv. Eng. Mater. 12 (2010) 779. DOI:10.1002/adem.20090034010.1002/adem.200900340Suche in Google Scholar
[10] L.G. Kornelyuk, A.Yu. Lozovoi, I.M. Razumovskii: Philos. Mag. A 77 (1998) 465. DOI:10.1080/0141861980822376510.1080/01418619808223765Suche in Google Scholar
[11] F.J. Humphreys, M. Hatherly: Recrystallization and related annealing phenomena, Elsevier, Berlin (2004). DOI:10.1016/B978-008044164-1/50005-010.1016/B978-008044164-1/50005-0Suche in Google Scholar
[12] E. Rabkin, Y. Amouyal, L. Klinger: Acta Mater. 52 (2004) 4953. DOI:10.1016/j.actamat.2004.06.02710.1016/j.actamat.2004.06.027Suche in Google Scholar
[13] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett: Mater. Sci. Eng. A 238 (1997) 21. DOI:10.1016/S0921-5093(97)00424-310.1016/S0921-5093(97)00424-3Suche in Google Scholar
[14] H.W. Zhang, X. Huang, R. Pippan, N. Hansen: Acta Mater. 58 (2010) 1698. DOI:10.1016/j.actamat.2009.10.00510.1016/j.actamat.2009.10.005Suche in Google Scholar
[15] S.V. Divinski, G. Reglitz, G. Wilde: Acta Mater. 58 (2010) 386. DOI:10.1016/j.actamat.2009.09.01510.1016/j.actamat.2009.09.015Suche in Google Scholar
[16] H.S. Chen, A. Godfrey, N. Hansen, J.X. Xie, Q. Liu: Mater. Sci. Eng. A 483–484 (2008) 157.10.1016/j.msea.2006.07.177Suche in Google Scholar
[17] M. Winning, A.D. Rollet: Acta Mater. 53 (2005) 2901. DOI:10.1016/j.actamat.2005.03.00510.1016/j.actamat.2005.03.005Suche in Google Scholar
[18] E. Rabkin, I. Gutman, M. Kazakevich, E. Buchman, D. Gorni: Mater. Sci. Eng. A 396 (2005) 11. DOI:10.1016/j.msea.2005.01.01510.1016/j.msea.2005.01.015Suche in Google Scholar
[19] W.D. Nix, H.J. Gao: J. Mech. Phys. Solids 46 (1998) 411. DOI:10.1016/S0022-5096(97)00086-010.1016/S0022-5096(97)00086-0Suche in Google Scholar
[20] S.V. Divinski, G. Reglitz, I.S. Golovin, M. Peterlechner, R. Lapovok, Y. Estrin, G. Wilde: Acta Mater. 63 (2014);. DOI:10.1016/j.actamat.2014.08.064.10.1016/j.actamat.2014.08.064Suche in Google Scholar
[21] D. Setman, E. Schafler, E. Korznikova, M.J. Zehetbauer: Mater. Sci. Eng. A 493 (2008) 116. DOI:10.1016/j.msea.2007.06.09310.1016/j.msea.2007.06.093Suche in Google Scholar
[22] W. Wycisk, M. Feller-Kniepmeier: J. Nucl. Mater. 69–70 (1978) 616.10.1016/0022-3115(78)90293-3Suche in Google Scholar
[23] L.G. Harrison: Trans. Faraday Soc. 57 (1961) 1191. DOI:10.1039/tf961570119110.1039/tf9615701191Suche in Google Scholar
[24] D. Prokoshkina, V.A. Esin, G. Wilde, S.V. Divinski: Acta Mater. 61 (2013) 5188. DOI:10.1016/j.actamat.2013.05.01010.1016/j.actamat.2013.05.010Suche in Google Scholar
[25] K. Maier, H. Mehrer, E. Lessmann, W. Schule: Phys. Status Solidi B 78 (1976) 689. DOI:10.1002/pssb.222078015610.1002/pssb.2220780156Suche in Google Scholar
[26] O.V. Mishin,, A. Godfrey, D. Juul Jensen, N. Hansen: Acta Mater. 61 (2013) 5354. DOI:10.1016/j.actamat.2013.05.02410.1016/j.actamat.2013.05.024Suche in Google Scholar
[27] G.H. Zahid, Y. Huang, P.B. Prangnell: Acta Mater. 57 (2009) 3509. DOI:10.1016/j.actamat.2009.04.01010.1016/j.actamat.2009.04.010Suche in Google Scholar
[28] A.P. Zhilyaev, S.N. Sergeev, T.G. Langdon: J. Mater. Res. Technol. 3 (2014) 338. DOI:10.1016/j.jmrt.2014.06.00810.1016/j.jmrt.2014.06.008Suche in Google Scholar
[29] F. Tang, I.E. Anderson, T. Gnaupel-Herold, H. Prask: Mater. Sci. Eng. A 383 (2004) 362. DOI:10.1016/j.msea.2004.05.08110.1016/j.msea.2004.05.081Suche in Google Scholar
[30] J.A. Sæter, E. Nes: Mater. Sci. Forum 273 (1998) 477. 10.4028/www.scientific.net/MSF.273-275.477Suche in Google Scholar
[31] R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee: Scr. Mater. 49 (2003) 669. DOI:10.1016/S1359-6462(03)00395-610.1016/S1359-6462(03)00395-6Suche in Google Scholar
[32] X. Huang, N. Hansen, N. Tsuji: Science 312 (2006) 249. DOI:10.1126/science.112143510.1126/science.1121435Suche in Google Scholar PubMed
[33] T.Z. Li, L. Fu, B. Fu, A. Shan: Mater. Sci. Eng. A 558 (2012) 309. DOI:10.1016/j.msea.2012.07.11910.1016/j.msea.2012.07.119Suche in Google Scholar
[34] N. Kamikawa, X. Huang, N. Tsuji: Acta Mater. 57 (2009) 4198. DOI:10.1016/j.actamat.2009.05.01710.1016/j.actamat.2009.05.017Suche in Google Scholar
[35] I. Salehinia, V. Perez, D.F. Bahr: Philos. Mag. 92 (2012) 550. DOI:10.1080/14786435.2011.62863510.1080/14786435.2011.628635Suche in Google Scholar
[36] I.I. Kovensky: Fizika Metallov Metallovedenie 16 (1963) 613–614 (in Russian).Suche in Google Scholar
[37] J.R. Davis (Ed.): ASM specialty handbook: nickel, cobalt and their alloys, p. 14–54. ASM International (2000).Suche in Google Scholar
[38] R.G. Faulkner: J. Mater. Sci. 16 (1981) 373. DOI:10.1007/BF0073862610.1007/BF00738626Suche in Google Scholar
[39] M. Braunovic, in: J.H. Westbrook, H. Conrad (Eds.) The science of hardness testing and its research applications, American Society for Metals, Ohio (1973) p. 329.Suche in Google Scholar
[40] H.W. Allison, H. Samelson: J. Appl. Phys. 30 (1959) 1419. DOI:10.1063/1.173534610.1063/1.1735346Suche in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Study on the σ-phase precipitation of SAF2906 duplex stainless steel
- Recovery, recrystallization and diffusion in cold-rolled Ni
- Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
- Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
- Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
- Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
- Non-uniform sintering of yttria-stabilized zirconia powder compact
- Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
- Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
- Local structure of explosively welded titanium–stainless steel bimetal
- Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
- Short Communications
- Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
- Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
- The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
- Book Review / Buchbesprechungen
- Nanowerkstoffe für Einsteiger
- Personal
- Conferences
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Study on the σ-phase precipitation of SAF2906 duplex stainless steel
- Recovery, recrystallization and diffusion in cold-rolled Ni
- Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
- Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
- Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
- Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
- Non-uniform sintering of yttria-stabilized zirconia powder compact
- Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
- Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
- Local structure of explosively welded titanium–stainless steel bimetal
- Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
- Short Communications
- Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
- Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
- The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
- Book Review / Buchbesprechungen
- Nanowerkstoffe für Einsteiger
- Personal
- Conferences