Abstract
Three different approaches were used for the synthesis of niobium boride using a stoichiometric ratio of Mg–B2O3– Nb powder mixture: (i) thermal ignition, (ii) mechanochemical and (iii) a combined mechanical and thermal activation process. Phase transformation analysis and structural evaluation were carried out by means of differential thermal analysis techniques, X-ray diffractometry, scanning electron microscopy and transmission electron microscopy. During the thermal synthesis, the reaction between Mg and B2O3 partially occurred (liquid state reaction). The desired final phase (NbB2) was poorly obtained. Phase analysis revealed that the NbB2 phase was synthesized after 10 h of high energy ball milling. A pre-milling treatment of the powder mixture up to 2 h significantly reduced the reactions temperature (580 °C). Consequently, NbB2 was prepared simultaneously involving magnesiothermic reduction of B2O3 and reaction between elemental of Nb and boron. Mg3(BO3)2, as major by-product, was formed in noticeable amounts during the thermal process, while its quantity significantly decreased during mechanochemical synthesis and completely eliminated by using the combined mechanical and thermal synthesis.
References
[1] K. Nakano, K. Doi, K. Kuwayama, T. Imura: J. Less-Common Met. 82 (1981) 309. DOI:10.1016/0022-5088(81)90233-210.1016/0022-5088(81)90233-2Search in Google Scholar
[2] W. Gordon, S.B. Soffer: J. Phys. Chem. Solid 36 (1975) 627. DOI:10.1016/0022-3697(75)90080-310.1016/0022-3697(75)90080-3Search in Google Scholar
[3] M. Usta: Surf. Coat. Technol. 194 (2005) 25. DOI:10.1016/j.surfcoat.2004.06.04010.1016/j.surfcoat.2004.06.040Search in Google Scholar
[4] T. Tsuchida, T. Kakuta: J. Alloys Compd. 398 (2005) 67. DOI:10.1016/j.jallcom.2005.01.04910.1016/j.jallcom.2005.01.049Search in Google Scholar
[5] T. Matsudaira, H. Itoh, S. Naka, H. Hamamoto: J. Less-Common Met. 155 (1989) 207. DOI:10.1016/0022-5088(89)90229-410.1016/0022-5088(89)90229-4Search in Google Scholar
[6] H. Takeya, A. Matsumoto, K. Hirata, Y.S. Sung, K. Togano: Physica C 412–414 (2004) 111. DOI:10.1016/j.physc.2003.12.02810.1016/j.physc.2003.12.028Search in Google Scholar
[7] C.L. Yeh, W.H. Chen: J. Alloys Compd. 420 (2006) 111. DOI:10.1016/j.jallcom.2005.10.03110.1016/j.jallcom.2005.10.031Search in Google Scholar
[8] O. Torabi, M.H. Golabgir, H. Tajizadegan, S. Naghibib, A. Jamshidi: Int. J. Mater. Res. (formerly Z. Metallkd.) 105 (2014) 778. DOI:10.3139/146.11108810.3139/146.111088Search in Google Scholar
[9] M. Jalaly, M.S. Bafghi, M. Tamizifar, F.J. Gotor: Adv. Appl. Ceram. 112 (2013) 383. DOI:10.1179/1743676113Y.000000009110.1179/1743676113Y.0000000091Search in Google Scholar
[10] M.J. Sayagués, M.A. Avilés, J.M. Córdoba, F.J. Gotor: Powder Technol. 256 (2014) 244. DOI:10.1016/j.powtec.2014.02.03110.1016/j.powtec.2014.02.031Search in Google Scholar
[11] C.L. Yeh, W.C. Kao: J. Alloys Compd. 615 (2014) 734. DOI:10.1016/j.jallcom.2014.06.16710.1016/j.jallcom.2014.06.167Search in Google Scholar
[12] C.L. Yeh, W.H. Chen: J. Alloys Compd. 422 (2006) 78. DOI:10.1016/j.jallcom.2005.11.05310.1016/j.jallcom.2005.11.053Search in Google Scholar
[13] D. Osso, O. Tillementa A. Mocellin, G. Le Caer, O. Babushkin, T. Lindbäck: J. Eur. Ceram. Soc. 15 (1995) 1207. DOI:10.1016/0955-2219(95)00096-810.1016/0955-2219(95)00096-8Search in Google Scholar
[14] T. Tsuchida, T. Kakuta: J. Eur. Ceram. Soc. 27 (2007) 527. DOI:10.1016/j.jeurceramsoc.2006.04.10610.1016/j.jeurceramsoc.2006.04.106Search in Google Scholar
[15] T. Tsuchida, T. Kakuta: J. Alloys Compd. 415 (2006) 156. DOI:10.1016/j.jallcom.2005.08.01210.1016/j.jallcom.2005.08.012Search in Google Scholar
[16] P. Balaz: Mechanochemistry in nanoscience and minerals engineering, Springer Berlin Heidelberg, Germany (2008).Search in Google Scholar
[17] L. Takacs: Int. J. SHS 18 (2009) 276. DOI:10.3103/S106138620904008610.3103/S1061386209040086Search in Google Scholar
[18] K. Iizumi, C. Sekiya.S. Okada, K. Kudou, T. Shishido: J. Eur. Ceram. Soc. 26 (2006) 635. DOI:10.1016/j.jeurceramsoc.2005.06.01210.1016/j.jeurceramsoc.2005.06.012Search in Google Scholar
[19] O. Torabi, R. Ebrahimi-Kahrizsangi, M.H. Golabgir, H. Tajizadegan, A. Jamshidi: Int. J. Refract. Met. Hard Mater. 48 (2015) 102. DOI:10.1016/j.ijrmhm.2014.07.04010.1016/j.ijrmhm.2014.07.040Search in Google Scholar
[20] M. Yaghoubi, O. Torabi: Int. J. Refract. Met. Hard Mater. 43 (2014) 132. DOI:10.1016/j.ijrmhm.2013.11.01410.1016/j.ijrmhm.2013.11.014Search in Google Scholar
[21] Y. Liu, S.Yin, Z. Guo, L. Hoyi: J. Mater. Res. 13 (1998) 1749. DOI:10.1557/JMR.1998.000610.1557/JMR.1998.0006Search in Google Scholar
[22] W.C. Lee, S.L. Chung: J. Am. Ceram. Soc. 80 (1997) 53. DOI:10.1111/j.1151-2916.1997.tb02790.x10.1111/j.1151-2916.1997.tb02790.xSearch in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Original Contributions
- Study on the σ-phase precipitation of SAF2906 duplex stainless steel
- Recovery, recrystallization and diffusion in cold-rolled Ni
- Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
- Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
- Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
- Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
- Non-uniform sintering of yttria-stabilized zirconia powder compact
- Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
- Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
- Local structure of explosively welded titanium–stainless steel bimetal
- Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
- Short Communications
- Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
- Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
- The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
- Book Review / Buchbesprechungen
- Nanowerkstoffe für Einsteiger
- Personal
- Conferences
Articles in the same Issue
- Frontmatter
- Original Contributions
- Study on the σ-phase precipitation of SAF2906 duplex stainless steel
- Recovery, recrystallization and diffusion in cold-rolled Ni
- Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
- Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
- Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
- Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
- Non-uniform sintering of yttria-stabilized zirconia powder compact
- Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
- Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
- Local structure of explosively welded titanium–stainless steel bimetal
- Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
- Short Communications
- Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
- Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
- The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
- Book Review / Buchbesprechungen
- Nanowerkstoffe für Einsteiger
- Personal
- Conferences