Startseite Technik Non-uniform sintering of yttria-stabilized zirconia powder compact
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-uniform sintering of yttria-stabilized zirconia powder compact

  • Kais Hbaieb EMAIL logo
Veröffentlicht/Copyright: 27. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Sintering behavior in both axial and radial directions has been studied for both pure and doped 8 mol.% yttria stabilized zirconia (8YSZ) with different concentrations of lithium nitrate. Detailed measurements were conducted at different positions in radial and axial directions to study the spatial variation in sintering of the powder compact. Doping with lithium nitrate was used to study the effect of varying the sintering rate on the spatial variation of sintering. It was shown that variation in sintering strain in the axial direction is small, whereas a linear gradient is noticeable in the radial direction. The variation in radial strain peaks at relatively low strains (5 – 10 %) and reduces to a minimum at the end of sintering. Comparing average axial and radial strains showed that radial strain is consistently higher than axial strain, implying that sintering is anisotropic especially during the intermediate stage. Density is determined in two ways: (1) Calculated based on measured volumetric strain, (2) calculated assuming sintering is isotropic; the two quantities are compared. It is shown that density divergence can rise to as large as 15 % and nearly vanishes at the end of sintering.


Assistant Professor, Dr. Kais Hbaieb College of Engineering, Mechanical Department Science and Technology Unit, Building 110, First floor, Room G08 Taibah University P. O. Box 344 Madinah Saudi Arabia Tel.: +966 (0) 567473147

References

[1] F.M. Mahoney, M.J. Readey, in: Proc. Sci. Tech. Commer. Powder Synth. Shape Form. Process., Cincinnati, OH (1995).Suche in Google Scholar

[2] D.N. Bencoe, C.B. DiAntonio, K.G. Ewsuk: http://www.bam.de/de/kompetenzen/fachabteilungen/abteilung_5/fg54/fg54_medien/fg54-poster_density_gradient_evolution_alumina.pdfSuche in Google Scholar

[3] S.J. Glass, K.G. Ewsuk, F.M. Mahoney, in: Proc. Am. Ceram. Soc. Int. Symp. Manuf. Pract. Technol., New Orleans, LA (1995) 5–8.Suche in Google Scholar

[4] S.J. Glass, K.G. Ewsuk, F.M. Mahoney, in: T.K. Gupta, B. Hire-math, K.M. Nair (Eds.), Ceramic Transactions, Ceram. Manuf. Pract. Technol., American Ceramic Society, Westerville, OH 70 (1996) 3.Suche in Google Scholar

[5] A. Zavaliangos, J.M. Missiaen, D. Bouvard: Sci. Sinter. 38 (2006) 13. DOI:10.2298/SOS0601013Z10.2298/SOS0601013ZSuche in Google Scholar

[6] H. Kuroki: Key Eng. Mater. 29–30 (1989) 365. DOI: 10.4028/www.scientific.net/KEM.29-31.365Suche in Google Scholar

[7] C.L. Martin, L.C.R. Schneider, L. Olmos, D. Bouvard: Scr. Mater. 55 (2006) 425. DOI:10.1016/j.scriptamat.2006.05.01710.1016/j.scriptamat.2006.05.017Suche in Google Scholar

[8] F. Wakai, K. Chihara, M. Yoshida: Acta Mater. 55 (2007) 4553. DOI:10.1016/j.actamat.2007.04.02710.1016/j.actamat.2007.04.027Suche in Google Scholar

[9] A. Wonisch, O. Guillon, T. Kraft, M. Moseler, H. Riedel, J. Roedel: Acta Mater. 55 (2007) 5187. DOI:10.1016/j.actamat.2007.05.03810.1016/j.actamat.2007.05.038Suche in Google Scholar

[10] M.I. Zainuddin, S. Tanaka, R. Furushima, K. Uematsu: J. Eur. Ceram. Soc. 31 (2011) 3. DOI:10.1016/j.jeurceramsoc.2010.09.01110.1016/j.jeurceramsoc.2010.09.011Suche in Google Scholar

[11] A.R. Boccaccini, P.A. Trusty: Mater. Charact. 41 (1998) 109. DOI:10.1016/S1044-5803(98)00025-410.1016/S1044-5803(98)00025-4Suche in Google Scholar

[12] A. Shui, N. Uchida, K. Uematsu: Powder Technol. 127 (2002) 9. DOI:10.1016/S0032-5910(02)00004-910.1016/S0032-5910(02)00004-9Suche in Google Scholar

[13] B. Henrich, A. Wonisch, T. Kraft, M. Moseler, H. Riedel: Acta Mater. 55 (2007) 753. DOI:10.1016/j.actamat.2006.09.00510.1016/j.actamat.2006.09.005Suche in Google Scholar

[14] F.P. Beer, E.R. Johnston, J.T. DeWolf, D. Mazurek: Mechanics of Materials, McGraw Hill Inc., New York (2014). 10.4028/www.scientific.net/AMM.661.73Suche in Google Scholar

[15] R.C. Hibbeler: Mechanics of Materials, Prentice Hall, Pearson Education South Asia Pte. Ltd., Singapore (2013).Suche in Google Scholar

[16] R. Zuo, E. Aulbach, R.K. Bordia, J. Roedel: J. Am. Ceram. Soc. 86 (2003) 1099. DOI:10.1111/j.1151-2916.2003.tb03431.x10.1111/j.1151-2916.2003.tb03431.xSuche in Google Scholar

[17] D. Frame, R.K. Bordia, in: D. Bouvard (Ed.), Proc. 4th Int. Conf. Sinter., Grenoble, France (2005) 272.Suche in Google Scholar

[18] J.B. Ollagnier, O. Guillon, J. Roedel: Int. J. Appl. Ceram. Technol. 3 (2006) 437. DOI:10.1111/j.1744-7402.2006.02112.x10.1111/j.1744-7402.2006.02112.xSuche in Google Scholar

[19] K. Hbaieb: Ceram. Int. 38 (2012) 4159. DOI:10.1016/j.ceramint.2012.01.07610.1016/j.ceramint.2012.01.076Suche in Google Scholar

Received: 2014-07-21
Accepted: 2015-01-12
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Artikel in diesem Heft

  1. Frontmatter
  2. Original Contributions
  3. Study on the σ-phase precipitation of SAF2906 duplex stainless steel
  4. Recovery, recrystallization and diffusion in cold-rolled Ni
  5. Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
  6. Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
  7. Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
  8. Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
  9. Non-uniform sintering of yttria-stabilized zirconia powder compact
  10. Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
  11. Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
  12. Local structure of explosively welded titanium–stainless steel bimetal
  13. Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
  14. Short Communications
  15. Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
  16. Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
  17. The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
  18. Book Review / Buchbesprechungen
  19. Nanowerkstoffe für Einsteiger
  20. Personal
  21. Conferences
Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111216/pdf
Button zum nach oben scrollen