Startseite Technik Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments

  • Jyoti Prakash EMAIL logo , Kinshuk Dasgupta , Brij Kumar und J. K. Chakravartty
Veröffentlicht/Copyright: 27. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The oxidation kinetics of a 2-D carbon fabric were studied in both an air and a pure oxygen environment. A simple approach using non-isothermal thermogravimetry and differential thermogravimetry was used. The results showed that the non-isothermal oxidation process of the carbon fabric exhibited self-catalytic characteristics in both environments. The oxidation mechanism and kinetic parameters were analyzed with differential and integral models. Evidence indicated that the oxidation process was a surface-induced phenomenon. The oxidation mechanism in oxygen environment was controlled by random nucleation, whereas in the case of air environment it was phase boundary reaction controlled. Different oxidation mechanisms and their correlations with kinetic parameters have been discussed in detail.


Dr. Jyoti Prakash Materials Group Bhabha Atomic Research Centre Trombay Mumbai-400085 India Tel.: +91-22-25593924 Fax: +91-22-25505151

References

[1] Y.B. Fei, J.H. Lu, H.J. Li, L.J. Guo, Z.S. Chen: Vacuum 102 (2014) 51–53. DOI:10.1016/j.vacuum.2013.10.01810.1016/j.vacuum.2013.10.018Suche in Google Scholar

[2] B. Wang, G. Zhang, Q. He, L. Ma, L. Wu, J. Feng: Mater. Des. 55 (2014) 591–596. DOI:10.1016/j.matdes.2013.09.05210.1016/j.matdes.2013.09.052Suche in Google Scholar

[3] H.K. Shin, H.B. Lee, K.S. Kim: Carbon 39 (2001) 959–970. DOI:10.1016/S0008-6223(00)00158-510.1016/S0008-6223(00)00158-5Suche in Google Scholar

[4] S.S. Tzeng, W.C. Lin: Carbon 37 (1999) 2011–2019. DOI:10.1016/S0008-6223(99)00074-310.1016/S0008-6223(99)00074-3Suche in Google Scholar

[5] P.B. Pollock: Carbon 28 (1990) 717–732. DOI:10.1016/0008-6223(90)90074-910.1016/0008-6223(90)90074-9Suche in Google Scholar

[6] P.J. Falzon, I. Herszberg: Compos. Sci. Technol. 58 (1998) 253–265. DOI:10.1016/S0266-3538(97)00133-410.1016/S0266-3538(97)00133-4Suche in Google Scholar

[7] S. Senet, R.E. Grimes, D.L. Hunn, K.W. White: Carbon 29 (1991) 1039–1049. DOI:10.1016/0008-6223(91)90184-K10.1016/0008-6223(91)90184-KSuche in Google Scholar

[8] F. Qin, L.N. Peng, G.Q. He, J. Li: Corros. Sci. 77 (2013) 164–170. 10.1016/j.corsci.2013.07.040Suche in Google Scholar

[9] S.J. Park, M.K. Seo, D.R. Lee: Carbon 41 (2003) 2991–3002. DOI:10.1016/S0008-6223(02)00384-610.1016/S0008-6223(02)00384-6Suche in Google Scholar

[10] T.L. Dhami, L.M. Manocha, O.P. Bahl: Carbon 29 (1991) 51–60. DOI:10.1016/0008-6223(91)90094-Y10.1016/0008-6223(91)90094-YSuche in Google Scholar

[11] J. Yu, L. Meng, D. Fan, C. Zhang, F. Yu, Y. Huang: Compos. Part B: Eng. 60 (2014) 261–267. 10.1016/j.compositesb.2013.12.037Suche in Google Scholar

[12] Z.J. Dong, X.K. Li, G.M. Yuan, Z.W. Cui, Y. Cong, A. Westwood: Mater. Des. 50 (2013) 156–164. DOI:10.1016/j.matdes.2013.02.08410.1016/j.matdes.2013.02.084Suche in Google Scholar

[13] N. Jacobson, D. Hull: Oxid. Met. 74 (2010) 193–203. DOI:10.1007/s11085-010-9208-410.1007/s11085-010-9208-4Suche in Google Scholar

[14] I.M.K. Ismail: Carbon 29 (1991) 777–792. DOI:10.1016/0008-6223(91)90017-D10.1016/0008-6223(91)90017-DSuche in Google Scholar

[15] P. Crocker, B. McEnaney: Carbon 29 (1991) 881–885. DOI:10.1016/0008-6223(91)90163-D10.1016/0008-6223(91)90163-DSuche in Google Scholar

[16] B.H. Eckstein: Fibre Sci. Technol. 14 (1981) 139–156. DOI:10.1016/0015-0568(81)90037-310.1016/0015-0568(81)90037-3Suche in Google Scholar

[17] P. Gao, H. Wang, Z. Jin: Thermochim. Acta 414 (2004) 59–63. DOI:10.1016/j.tca.2003.11.01710.1016/j.tca.2003.11.017Suche in Google Scholar

[18] N.S. Jacobson, D.M. Curry: Carbon 44 (2006) 1142–1150. DOI:10.1016/j.carbon.2005.11.01310.1016/j.carbon.2005.11.013Suche in Google Scholar

[19] G.W. Smith: Carbon 22 (1984) 477–479. DOI:10.1016/0008-6223(84)90078-210.1016/0008-6223(84)90078-2Suche in Google Scholar

[20] D.H. Kim, B.-H. Kim, K.S. Yang, Y.H. Bang, S.R. Kim, H.K. Im: J. Korean Chem. Soc. 55 (2011) 819–823. DOI:10.5012/jkcs.2011.55.1.10410.5012/jkcs.2011.55.1.104Suche in Google Scholar

[21] S.-S. Tzeng, T.-Y. Wu, T.-Y. Chang, C.-T. Yang, C.-L. Chou, C.-J. Lin: J. Mater. Eng. Perform. 9 (2010) 1352–1356. DOI:10.1007/s11665-010-9628-y10.1007/s11665-010-9628-ySuche in Google Scholar

[22] A.J. Jing, A. Zhang, Z. Wu: Thermal analysis of polymer fibers, Handbook of Thermal Analysis and Calorimetry 3 (2002) 409–490. DOI:10.1016/S1573-4374(02)80014-010.1016/S1573-4374(02)80014-0Suche in Google Scholar

[23] J. Prakash, K. Dasgupta, B. Kumar, S.K. Ghosh, J.K. Chakravartty: Surf. Coat. Technol. (2014). DOI:10.1016/j.surfcoat.2014.10.01910.1016/j.surfcoat.2014.10.019Suche in Google Scholar

[24] T.A. Ozawa: Bull. Chem. Soc. Japan 38 (1965) 1881. DOI:10.1246/bcsj.38.188110.1246/bcsj.38.1881Suche in Google Scholar

[25] H.E. Kissinger: Anal. Chem. 29 (1957) 1702. DOI:10.1021/ac60131a04510.1021/ac60131a045Suche in Google Scholar

[26] W.W. Wendland: Thermal Methods of Analysis, John Wiley & Sons Inc, New York (1974).Suche in Google Scholar

[27] V. Satava, J. Sestak: J. Therm. Anal. 8 (1975) 477–489. DOI:10.1007/BF0191012710.1007/BF01910127Suche in Google Scholar

[28] J. Sestak: Thermodynamical Properties of Solids, Academia, Prague (1984).Suche in Google Scholar

[29] A.W. Coats, J.P. Redfern: Nature 20 (1964) 68. DOI:10.1038/201068a010.1038/201068a0Suche in Google Scholar

[30] P. Madhusudanan, K. Krishnan, K. Ninan: Thermochim. Acta 97 (1986) 189–201. DOI:10.1016/0040-6031(86)87019-810.1016/0040-6031(86)87019-8Suche in Google Scholar

[31] L.R. Zhao, B.Z. Zang: Trans. J. Mater. Sci. 32 (1997) 2811–2819. DOI:10.1023/A:101861221457210.1023/A:1018612214572Suche in Google Scholar

[32] J.H. Sharp, S.A. Wendworth: Anal. Chem. 41 (1969) 2060–2062. DOI:10.1021/ac50159a04610.1021/ac50159a046Suche in Google Scholar

[33] V.F. Zhuravlav, I.G. Lesokhin, R.G. Tempelman: J. Appl. Chem. USSR (English Translation) 21 (1948) 887.Suche in Google Scholar

[34] B. Boonchom: J. Chem. Eng. Data 53 (2008) 1533. DOI:10.1021/je800103w10.1021/je800103wSuche in Google Scholar

[35] J.J. Rooney: J. Mol. Catal. A: Chem. 96 (1995) L1. DOI:10.1016/1381-1169(94)00054-910.1016/1381-1169(94)00054-9Suche in Google Scholar

Received: 2014-09-02
Accepted: 2015-01-12
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Artikel in diesem Heft

  1. Frontmatter
  2. Original Contributions
  3. Study on the σ-phase precipitation of SAF2906 duplex stainless steel
  4. Recovery, recrystallization and diffusion in cold-rolled Ni
  5. Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
  6. Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
  7. Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
  8. Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
  9. Non-uniform sintering of yttria-stabilized zirconia powder compact
  10. Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
  11. Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
  12. Local structure of explosively welded titanium–stainless steel bimetal
  13. Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
  14. Short Communications
  15. Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
  16. Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
  17. The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
  18. Book Review / Buchbesprechungen
  19. Nanowerkstoffe für Einsteiger
  20. Personal
  21. Conferences
Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111213/pdf
Button zum nach oben scrollen