Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy
-
Ercan Karaköse
Abstract
The microstructural, electrical and mechanical characteristics of conventionally and rapidly solidified Ni-23 wt.% Al alloys after heat treatments were investigated. The microstructures of Ni-23Al alloys were examined by means of scanning electron microscopy and the phase composition was identified using X-ray diffraction analysis. The phase transitions during the solidification process were investigated using differential thermal analysis under an Ar atmosphere. X-ray diffraction analysis indicated that the Ni-23Al samples showed an intermetallic γ′-Ni3Al phase, and we observed the intermetallic γ′-Ni3Al phase together with the β-NiAl phase after heat treatment at 700–900°C for 24 h. We performed electrical resistivity measurements by using the four-point probe technique in the temperature range 100–900°C. The resistivity of Ni-23 wt.% Al samples increases linearly with temperature. Vickers microindentation tests were carried out on the heat-treated samples with loads ranging from 392.26 mN to 1174.86 mN at room temperature. We found that the microhardness and effective elastic modulus values increased with increasing temperature and these values showed peak load dependence. The tensile and compressive stress values of the Ni–Al alloys also decreased with increasing temperature.
References
[1] A.J.Ardell, S.V.Prikhodko: Acta Mater.51 (2003) 5013. 10.1016/S1359-6454(03)00327-6Suche in Google Scholar
[2] K.S.Chantal, D.N.Ronald, N.S.David: Acta Mater.55 (2007) 119. 10.1016/j.actamat.2006.08.009Suche in Google Scholar
[3] K.Morsi: Mater. Sci. Eng. A299 (2001) 174. 10.1016/S0921-5093(00)01375-7Suche in Google Scholar
[4] F.Scheppe, P.R.Sahm, W.Hermann, U.Paul, J.Preuhs: Mater. Sci. Eng. A329–331 (2002) 596.Suche in Google Scholar
[5] N.S.Stoloff, C.T.Liu, S.C.Deevi: Intermetallics8 (2000) 1313. 10.1016/S0966-9795(00)00077-7Suche in Google Scholar
[6] V.K.Sikka, S.C.Deevi, S.Viswanathan, R.W.Swindeman, M.L.Santella: Intermetallics8 (2000) 1329. 10.1016/S0966-9795(00)00078-9Suche in Google Scholar
[7] H.Borodianska, M.Demura, K.Kishida, T.Hirano: Intermetallics10 (2002) 255. 10.1016/S0966-9795(01)00133-9Suche in Google Scholar
[8] H.Li, J.Guo, K.Huavai, H.Ye: J. NonCryst. Solids290 (2006) 258.Suche in Google Scholar
[9] M.H.Enayati, Z.Sadeghian, M.Salehi, A.Saidi: Mater. Sci. Eng. A375–377 (2004) 809.Suche in Google Scholar
[10] Z.Liu, X.K.Meng, T.Recktenwald, F.Mücklich: Mater. Sci. Eng. A342 (2003) 101. 10.1016/S0921-5093(02)00247-2Suche in Google Scholar
[11] J.D.Hunt, S.Z.Lu, in: D.T.J.Hurle (Ed.), Handbook of Crystal Growth, vol. 2b, Elsevier (1994) 1111.Suche in Google Scholar
[12] T.R.Anantharaman, C.Suryanarayana. Rapidly solidified metals, Trans Tech Publications, Aedermannsdorf, Switzerland (1987) 25.Suche in Google Scholar
[13] Y.Birol: J. Alloys Compd.439 (2007) 81. 10.1016/j.jallcom.2006.08.068Suche in Google Scholar
[14] E.J.Lavernia, J.D.Ayers, T.Srivatsan: Int. Mater. Rev.37 (1992) 1. 10.1179/imr.1992.37.1.1Suche in Google Scholar
[15] B.P.Bewlay, A.Sutliff, M.R.Jackson: Annual Reports, GE Corporate Research and Development, Schenectady, NY (1995).Suche in Google Scholar
[16] S.Hanada, S.Watanabe, W.Y.Kim, N.Masahashi, M.S.Kim: Mater. Sci. Eng. A239–240 (1997) 309. 10.1016/S0921-5093(97)00598-4Suche in Google Scholar
[17] C.E.Campbell, W.T.Boettinger, U.R.Kattner: Acta Mater.50 (2002) 775. 10.1016/S1359-6454(01)00383-4Suche in Google Scholar
[18] J.Cermak, V.Rothova: Acta Mater.51 (2003) 4411. 10.1016/S1359-6454(03)00276-3Suche in Google Scholar
[19] V.Rothova, J.Cermak: Intermetallics13 (2005) 113. 10.1016/j.intermet.2004.06.006Suche in Google Scholar
[20] G.Cao, L.Geng, Z.Zheng, M.Naka: Intermetallics15 (2007) 1672. 10.1016/j.intermet.2006.03.004Suche in Google Scholar
[21] F.M.Smits: Measurement of sheet resistivities with the four probe, The Bell Sys. Tech. J. (1958) 711.10.1002/j.1538-7305.1958.tb03883.xSuche in Google Scholar
[22] M.Arı, B.Saatçi, M.Gündüz, F.Meydaneri, M.Bozoklu: Mater. Charact.59 (2008) 624. 10.1016/j.matchar.2007.05.014Suche in Google Scholar
[23] U.Kolemen, O.Uzun, M.A.Aksan, N.Guclu, E.Yakinci: J. Alloys Compd.415 (2006) 294. 10.1016/j.jallcom.2005.09.023Suche in Google Scholar
[24] K.Sangwal, B.Surowska, P.Blaziak: Mater. Chem. Phys.80 (2003) 428. 10.1016/S0254-0584(02)00546-1Suche in Google Scholar
[25] Q.Zeng, I.Baker: Intermetallics15 (2007) 419. 10.1016/j.intermet.2006.08.010Suche in Google Scholar
[26] A.R.Yavari, B.Bochu: Philos. Mag. A59 (1989) 697. 10.1080/01418618908229793Suche in Google Scholar
[27] J.Ball, G.Gottstein: Intermetallics1 (1993) 191. 10.1016/0966-9795(93)90012-KSuche in Google Scholar
[28] J. GarciaBarriocanal, P.Perez, G.Garces, P.Adeva: Intermetallics14 (2006) 456. 10.1016/j.intermet.2005.08.008Suche in Google Scholar
[29] Z.Liu, X.K.Meng, T.Recktenwald, F.Mücklich: Mater. Sci. Eng. A342 (2003) 101. 10.1016/S0921-5093(02)00247-2Suche in Google Scholar
[30] H.Y.Kim, D.S.Chung, S.H.Hong: Mater. Sci. Eng. A396 (2005) 376. 10.1016/j.msea.2005.01.035Suche in Google Scholar
[31] S.Miura, Y.Mishima: Mater. Res. Soc. Symp. Proc.364 (1995) 561. 10.1557/PROC-364-561Suche in Google Scholar
[32] V.Rudnev, D.Loveless, R.Cook, M.Black: Handbook of induction heating, Markel Dekker Inc., New York (2003).Suche in Google Scholar
[33] M.J.Laubitz, T.Matsumura, P.J.Kelly: Can. J. Phys.54 (1976) 92. 10.1139/p76-011Suche in Google Scholar
[34] G.K.White, S.B.Woods: Phil. Trans. Roy. Soc. A251 (1959) 273. 10.1098/rsta.1959.0004Suche in Google Scholar
[35] K.Ikeda, K.Tanosaki: Trans. Jpn. Inst. Met.25 (1984) 447. 10.2320/matertrans1960.25.447Suche in Google Scholar
[36] E.Çadırlı: J. NonCryst. Solids357 (2011) 809. 10.1016/j.jnoncrysol.2010.11.104Suche in Google Scholar
[37] H.X.Dong, Y.H.He, Y.Jiang, L.Wu, J.Zou, N.P.Xu, B.Y.Huang, C.T.Liu: Mater. Sci. Eng. A528 (2011) 4849. 10.1016/j.msea.2011.02.014Suche in Google Scholar
[38] L.Sheng, W.Zhang, J.Guo, F.Yang, Y.Liang, H.Ye: Intermetallics18 (2010) 740. 10.1016/j.intermet.2009.10.015Suche in Google Scholar
[39] L.Y.Sheng, J.T.Guo, Y.X.Tian, L.Z.Zhou, H.Q.Ye: J. Alloys Compd.475 (2009) 730. 10.1016/j.jallcom.2008.07.109Suche in Google Scholar
[40] N.Parveen, G.V.S.Murthy: Bull. Mater. Sci.34 (2011) 323. 10.1007/s12034-011-0070-zSuche in Google Scholar
[41] A.Kumar, T.Jayakumar, B.Raj: Philos. Mag. Lett.86 (2006) 579. 10.1080/09500830600936401Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials
- Excellent cold rollability in a single pass of an Mg-4Er (wt.%) alloy
- An experimental study of the precipitation kinetics of pre-rolled Ni-Span-C 902 superalloy
- Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy
- Investigation of the wear resistance and microstructure of Al/SiC metal matrix composites as a function of reinforcement volume fraction and reinforcement to matrix particle size ratio applying artificial neural network
- Influence of zinc (II) ion concentration on Ni–Zn–P coatings deposited onto aluminum and their corrosion behavior
- Joining steel to aluminum alloy by resistance spot welding with a rivet
- Electrophysical and structure-sensitive properties of liquid Ga–In alloys
- Short Communications
- Synthesis and characterization of the novel nanocomposite Co(OH)2/graphene as supercapacitor materials
- Preparation of MnAlC flakes by surfactant-assisted ball-milling and the effects of annealing
- An improved two-stage sintering method for tungsten heavy alloys: conventional solid-phase sintering followed by microwave heating
- Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors
- Effects of La–Zn substituent and calcination temperature on the microstructure and magnetic properties of Sr-ferrites
- Predicting the corrosion tendency of α-brass in acidic and alkaline tap water
- People
- 10.3139/146.610026
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials
- Excellent cold rollability in a single pass of an Mg-4Er (wt.%) alloy
- An experimental study of the precipitation kinetics of pre-rolled Ni-Span-C 902 superalloy
- Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy
- Investigation of the wear resistance and microstructure of Al/SiC metal matrix composites as a function of reinforcement volume fraction and reinforcement to matrix particle size ratio applying artificial neural network
- Influence of zinc (II) ion concentration on Ni–Zn–P coatings deposited onto aluminum and their corrosion behavior
- Joining steel to aluminum alloy by resistance spot welding with a rivet
- Electrophysical and structure-sensitive properties of liquid Ga–In alloys
- Short Communications
- Synthesis and characterization of the novel nanocomposite Co(OH)2/graphene as supercapacitor materials
- Preparation of MnAlC flakes by surfactant-assisted ball-milling and the effects of annealing
- An improved two-stage sintering method for tungsten heavy alloys: conventional solid-phase sintering followed by microwave heating
- Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors
- Effects of La–Zn substituent and calcination temperature on the microstructure and magnetic properties of Sr-ferrites
- Predicting the corrosion tendency of α-brass in acidic and alkaline tap water
- People
- 10.3139/146.610026
- DGM News
- DGM News