Home Technology Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors
Article
Licensed
Unlicensed Requires Authentication

Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors

  • Yoko Takada , Toru Tsuji , Naoki Okamoto , Takeyasu Saito , Kazuo Kondo , Takeshi Yoshimura , Norifumi Fujimura , Koji Higuchi , Akira Kitajima and Akihiro Oshima
Published/Copyright: January 7, 2015

Abstract

The Pb content effect of chemical solution deposited lanthanum-doped lead zirconate titanate (PLZT) (Pb:La:Zr:Ti = Pb:3:30:70, Pb = 105∼117) was studied for conductive aluminum-doped zinc oxide (AZO) and tin-doped indium oxide (ITO) deposited as top electrodes by means of pulsed laser deposition. The crystallinity, surface morphology, ferroelectric properties and hydrogen degradation resistance of the ITO/PLZT/Pt and AZO/PLZT/Pt capacitors were evaluated. All the PLZT films showed perovskite phase (revealed by X-ray diffraction patterns) and showed similar surface morphology and grain size (revealed by scanning electron microscopy images). PLZT capacitors with a Pb content of 113 exhibited the largest remnant polarization (at 15 V (300 kV cm1)), however, the difference in hydrogen degradation resistance was small between the four levels of Pb content.


* Correspondence address, Associate Professor Takeyasu Saito, Osaka Prefecture University, #4B40 B5 Bldg., 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan. Tel.: +81-72-254-9303, Fax: +81-72-254-9303, E-mail:

References

[1] R.E.Jones, Jr., P.D.Maniar, R.Moazzami, P.Zurcher, J.Z.Witowski, Y.T.Lii, P.Chu, S.J.Gillespie: Thin Solid Films270 (1995) 584. 10.1016/0040-6090(95)06754-XSearch in Google Scholar

[2] N.Setter, D.Damjanovic, L.Eng, G.Fox, S.Gevorgian, S.Hong, A.Kingon, H.Kohlstedt, N.Y.Park, G.B.Stephenson, I.Stolitchnov, A.K.Taganstev, D.V.Taylor, T.Yamada, S.Streiffer: J. Appl. Phys.100 (2006) 051606. 10.1063/1.2336999Search in Google Scholar

[3] K.Kim, Y.J.Song: Microelectron. Reliab.43 (2003) 385. 10.1016/S0026-2714(02)00285-8Search in Google Scholar

[4] R.Bez, A.Pirovano: Mater. Sci. Semicond. Process.7 (2004) 349. 10.1016/j.mssp.2004.09.127Search in Google Scholar

[5] A.Suzuki, M.Nakamura, R.Michihata, T.Aoki, T.Matsushita, M.Okuda: Thin Solid Films517 (2008) 1478. 10.1016/j.tsf.2008.09.024Search in Google Scholar

[6] L.Kerkache, A.Layadi, E.Dogheche, D.Remiens: J. Alloys Compd.509 (2011) 6072. 10.1016/j.jallcom.2011.03.022Search in Google Scholar

[7] I.Shturman, G.E.Shter, A.Etin, G.S.Grader: Thin Solid Films517 (2009) 2767. 10.1016/j.tsf.2008.10.007Search in Google Scholar

[8] A.Itoh, Y.Hikosaka, T.Saito, H.Naganuma, H.Miyazawa, Y.Ozaki, Y.Kato, S.Mihara, H.Iwamoto, S.Mochizuki, M.Nakamura, T.Yamazaki: VLSI Tech. Symp. (2000) 32.Search in Google Scholar

[9] T.Yamamoto: Jpn. J. Appl. Phys.35 (1996) 5104. 10.1143/JJAP.35.1382Search in Google Scholar

[10] S.-Y.Chen, C.-L.Sun: J. Appl. Phys.90 (2001) 2970. 10.1063/1.1394159Search in Google Scholar

[11] L.Goux, D.Maes, J.G.Lisoni, H.Vander Meeren, V.Paraschiv, L.Haspeslagh, C.Artoni, G.Russo, R.Zambrano, D.J.Wouters: Microelectron. Eng.83 (2006) 2027. 10.1016/j.mee.2006.04.004Search in Google Scholar

[12] A.Li, D.Wu, H.Ling, T.Yu, M.Wang, X.Yin, Z.Liu, N.Ming: Thin Solid Films375 (2000) 215. 10.1016/S0040-6090(00)01220-7Search in Google Scholar

[13] B.H.Park, B.S.Kang, S.D.Bu, T.W.Noh, J.Lee, W.Jo: Nature401 (1999) 682. 10.1038/44352Search in Google Scholar

[14] D.Wu, A.Li, T.Zhu, Z.Liu, N.Ming: J. Appl. Phys.88 (2000) 5941. 10.1063/1.1287602Search in Google Scholar

[15] Y.-J.Seo, J.-S.Park, W.-S.Lee: Microelectron. Eng.83 (2006) 2238. 10.1016/j.mee.2006.10.011Search in Google Scholar

[16] M.Prabu, I.B. ShameemBanu, S.Gobalakrishnan, M.Chavali: J. Alloys Compd.551 (2013) 200. 10.1016/j.jallcom.2012.09.095Search in Google Scholar

[17] S.J.Kang, Y.H.Joung: J. Mater. Sci.42 (2007) 7899. 10.1007/s10853-006-0762-8Search in Google Scholar

[18] M.Pereira, A.G.Peixoto, M.J.M.Gomes: J. Eur. Ceram. Soc.21 (2001) 1353. 10.1016/S0955-2219(01)00017-6Search in Google Scholar

[19] M.I.Morozov, D.Damjanovic: J. Appl. Phys.104 (2008) 034107. 10.1063/1.2963704Search in Google Scholar

[20] Q.Zhang, R.W.Whatmore: J. Appl. Phys.94 (2003) 5228. 10.1063/1.1573346Search in Google Scholar

[21] A.Ignatiev, Y.Q.Xu, N.J.Wu, D.Liu: Mater. Sci. Eng.B56 (1998) 191. 10.1016/S0921-5107(98)00220-7Search in Google Scholar

[22] T.Wei, Y.Wang, C.Zhu, X.W.Dong, Y.D.Xia, J.S.Zhu, J.-M.Liu: Appl. Phys. A90 (2008) 185. 10.1007/s00339-007-4255-7Search in Google Scholar

[23] A.Dalakoti, A.Bandyopadhyay, S.Bose: J. Am. Ceram. Soc.89 (2006) 1140. 10.1111/j.1551-2916.2005.00839.xSearch in Google Scholar

[24] J.-K.Yang, W.S.Kim, H.-H.Park: Thin Solid Films377 (2000) 739. 10.1016/S0040-6090(00)01325-0Search in Google Scholar

[25] R.Thomas, S.Mochizuki, T.Mihara, T.Ishida: Thin Solid Films443 (2003) 14. 10.1016/S0040-6090(03)00926-XSearch in Google Scholar

[26] P.Verardi, F.Craciun, N.Scarisoreanu, G.Epurescu, M.Dinescu, I.Vrejoiu, A.Dauscher: Appl. Phys. A79 (2004) 1283. 10.1007/s00339-004-2751-6Search in Google Scholar

[27] W.Tao, S.B.Desu, T.K.Li: Mater. Lett.23 (1995) 177. 10.1016/0167-577X(95)00032-1Search in Google Scholar

[28] T.Nakagawa, J.Yamaguchi, T.Usuki, Y.Matsui, M.Okuyama, Y.Hamakawa: Jpn. J. Appl. Phys.18 (1979) 897. 10.1143/JJAP.18.1959Search in Google Scholar

[29] A.Sachdeva, R.P.Tandon: Ceram. Int.38 (2012) 1331. 10.1016/j.ceramint.2011.09.009Search in Google Scholar

[30] T.Saito, T.Tsuji, K.Izumi, Y.Hirota, N.Okamoto, K.Kondo, T.Yoshimura, N.Fujimura, A.Kitajima, A.Oshima: Electron. Lett.47 (2011) 8. 10.1049/el.2010.2770Search in Google Scholar

[31] A.V.Rao, S.A.Mansour, A.L.Bement, Jr.: Mater. Lett.29 (1996) 255. 10.1016/S0167-577X(96)00156-5Search in Google Scholar

[32] W.Dong, Y.Guo, B.Guo, H.Liu, H.Li, H.Liu: Matter. Lett.91 (2013) 359. 10.1016/j.matlet.2012.10.020Search in Google Scholar

[33] Y.Takada, T.Tsuji, N.Okamoto, T.Saito, K.Kondo, T.Yoshimura, N.Fujimura, K.Higuchi, A.Kitajima, A.Oshima: ECS Trans.50 (2013) 43. 10.1149/05005.0043ecstSearch in Google Scholar

[34] Y.Takada, T.Tsuji, N.Okamoto, T.Saito, K.Kondo, T.Yoshimura, N.Fujimura, K.Higuchi, A.Kitajima, A.Oshima: J. Mater. Sci: Mater. Electron.25 (2014) 2155. 10.1007/s10854-014-1853-ySearch in Google Scholar

[35] S.Aggarwal, S.R.Perusse, B.Nagaraj, R.Ramesh: Appl. Phys. Lett.74 (1999) 3023. 10.1063/1.123301Search in Google Scholar

[36] H.J.Joo, S.H.Lee, J.H.No, S.Kojima, C.C.Chou, H.-K.Kim, M.S.Jang: Jpn. J. Appl, Phys.42 (2003) 1292. 10.1143/JJAP.42.1292Search in Google Scholar

[37] C.W.Law, K.Y.Tong, J.H.Li, K.Li: Thin Solid Films335 (1998) 220. 10.1016/S0040-6090(98)00813-XSearch in Google Scholar

[38] D.Van Genechten, G.Vanhoyland, J.D'Haen, J.Johnson, D.J.Wouters, M.K.Van Bael, H.Van den Rul, J.Mullens, L.C.Van Poucke: Thin Solid Films467 (2004) 104. 10.1016/j.tsf.2004.03.021Search in Google Scholar

[39] Z.-J.Wang, R.Maeda, K.Kikuchi: Jpn. J. Appl. Phys.38 (1999) 5342. 10.1143/JJAP.38.5342Search in Google Scholar

[40] K.Miyazawa, K.Ito, R.Maeda: Ceram. Int.26 (2000) 501. 10.1016/S0272-8842(99)00085-1Search in Google Scholar

[41] M.Gaidi, A.Amassian, M.Chaker, M.Kulishov, L.Martinu: Appl. Surf. Sci.226 (2004) 347. 10.1016/j.apsusc.2003.10.037Search in Google Scholar

[42] A.Bhaskar, T.-H.Chang, H.-Y.Chang, S.-Y.Cheng: Appl. Surf. Sci.255 (2009) 3795. 10.1016/j.apsusc.2008.10.043Search in Google Scholar

Received: 2014-01-19
Accepted: 2014-08-15
Published Online: 2015-01-07
Published in Print: 2015-01-09

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials
  5. Excellent cold rollability in a single pass of an Mg-4Er (wt.%) alloy
  6. An experimental study of the precipitation kinetics of pre-rolled Ni-Span-C 902 superalloy
  7. Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy
  8. Investigation of the wear resistance and microstructure of Al/SiC metal matrix composites as a function of reinforcement volume fraction and reinforcement to matrix particle size ratio applying artificial neural network
  9. Influence of zinc (II) ion concentration on Ni–Zn–P coatings deposited onto aluminum and their corrosion behavior
  10. Joining steel to aluminum alloy by resistance spot welding with a rivet
  11. Electrophysical and structure-sensitive properties of liquid Ga–In alloys
  12. Short Communications
  13. Synthesis and characterization of the novel nanocomposite Co(OH)2/graphene as supercapacitor materials
  14. Preparation of MnAlC flakes by surfactant-assisted ball-milling and the effects of annealing
  15. An improved two-stage sintering method for tungsten heavy alloys: conventional solid-phase sintering followed by microwave heating
  16. Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors
  17. Effects of La–Zn substituent and calcination temperature on the microstructure and magnetic properties of Sr-ferrites
  18. Predicting the corrosion tendency of α-brass in acidic and alkaline tap water
  19. People
  20. 10.3139/146.610026
  21. DGM News
  22. DGM News
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111154/html
Scroll to top button