Startseite Effects of rotating magnetic and ultrasonic fields on the microstructure and mechanical properties of Al-8 wt.%Si alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of rotating magnetic and ultrasonic fields on the microstructure and mechanical properties of Al-8 wt.%Si alloy

  • Yubo Zhang , Hang Chen , Jinchuan Jie und Tingju Li
Veröffentlicht/Copyright: 17. November 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The application of physical fields is currently a common method to improve the solidification structure of Al alloys. In this study, rotating magnetic field (RMF) and power ultrasonic field (USF) were applied during the solidification process of Al-8 wt.%Si alloy. The experimental results have been compared to those of conventional casting and have verified that the alloys processed under individual RMF or USF exhibit obvious refinement in their solidification structure as well as an enhancement in the mechanical properties. However, the refinement under RMF is not fully effective, while the ultrasonically treated region is inadequate. For the case of the compound fields, it could be furthermore observed that these improvements become more pronounced. Owing to the advantages of both RMF and USF, RMF enlarges the ultrasonic treated region, and USF improves the refinement effect of RMF as well.


* Professor Tingju Li, PhD, School of Material Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China. Tel.: +86 0411 84708940, Fax: +86 0411 84708940, E-mail: .

References

[1] P.A.Nikrityuk, K.Eckert, R.Grundmann: Acta Mech.186 (2006) 1. 10.1007/s00707-006-0354-3Suche in Google Scholar

[2] S.Eckert, P.Nikrityuk, B.Willers, D.Räbiger, N.Shevchenko, H.Neumann-Heyme, V.Travnikov, S.Odenbach, A.Voigt, K.Eckert: Eur. Phys. J. Spec. Top.220 (2013) 123. 10.1140/epjst/e2013-01802-7Suche in Google Scholar

[3] J.Zhu, T.M.Wang, F.Cao, W.X.Huang, H.W.Fu, Z.N.Chen: Mater. Lett.89 (2012) 137. 10.1016/j.matlet.2012.08.094Suche in Google Scholar

[4] O.V.Abramov: Ultrasonics25 (1987) 73. 10.1016/0041-624X(87)90063-1Suche in Google Scholar

[5] G.I.Eskin: Ultrasonic treatment of light alloy melts, CRC Press (1997).10.1201/9781498701792Suche in Google Scholar

[6] T.V.Atamanenko, D.G.Eskin, L.Zhang, L.Katgerman: Metall. Mater. Trans. A41 (2010) 2056. 10.1007/s11661-010-0232-4Suche in Google Scholar

[7] D.Shu, B.D.Sun, J.W.Mi, P.S.Grant: Metall. Mater. Trans. A43 (2012) 3755. 10.1007/s11661-012-1188-3Suche in Google Scholar

[8] H.Puga, J.C.Teixeira, J.Barbosa, E.Seabra, S.Ribeiro, M.Prokic: Mater. Lett.63 (2009) 2089. 10.1016/j.matlet.2009.01.009Suche in Google Scholar

[9] I.Grants, G.Gerbeth: J. Fluid Mech.431 (2001) 407. 10.1017/S0022112000003141Suche in Google Scholar

[10] W.D.Griffiths, D.G.McCartney: Mater. Sci. Eng. A216 (1996) 47. 10.1016/0921-5093(96)10392-0Suche in Google Scholar

[11] Z.T.Zhang, J.Li, H.Y.Yue, J.Zhang, T.J.Li: J. Alloys Compd.484 (2009) 458. 10.1016/j.jallcom.2009.04.015Suche in Google Scholar

[12] X.Jian, T.T.Meek, Q.Han: Scr. Mater.54 (2006) 893. 10.1016/j.scriptamat.2005.11.004Suche in Google Scholar

[13] J.Campbell: Int. Mater. Rev.26 (1981) 71. 10.1179/095066081790149249Suche in Google Scholar

[14] Y.Zhang, J.Jie, Y.Gao, Y.Lu, T.Li: Intermetallics42 (2013) 120. 10.1016/j.intermet.2013.05.003Suche in Google Scholar

[15] G.I.Eskin: Ultrason. Sonochem. 1 (1994) S59. 10.1016/1350-4177(94)90029-9Suche in Google Scholar

[16] R.Wagterveld, L.Boels, M.Mayer, G.Witkamp: Ultrason. Sonochem.18 (2011) 216. 10.1016/j.ultsonch.2010.05.006Suche in Google Scholar PubMed

[17] A.Kumar, T.Kumaresan, A.B.Pandit, J.B.Joshi: Chem. Eng. Sci.61 (2006) 7410. 10.1016/j.ces.2005.12.014Suche in Google Scholar

Received: 2013-12-26
Accepted: 2014-05-23
Published Online: 2014-11-17
Published in Print: 2014-11-10

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111121/html?lang=de
Button zum nach oben scrollen