Home Effect of Ni-based conversion coating and Ni–P electroless plating on the bonding process of pure Al and AZ31 alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of Ni-based conversion coating and Ni–P electroless plating on the bonding process of pure Al and AZ31 alloy

  • Jinchuan Jie , Jialei Zhao , Hang Chen , Ying Fu , Zhiqiang Cao and Tingju Li
Published/Copyright: May 8, 2014
Become an author with De Gruyter Brill

Abstract

For the first time, the present study investigates the preparation of Al/Mg bimetal using Ni-based conversion plating and Ni–P electroless plating by means of diffusion bonding. In this study, AZ31 alloy was coated with an Ni-based interlayer by conversion plating and an Ni–P interlayer by electroless plating; the Al/Mg bimetallic materials were prepared by diffusion bonding in an air atmosphere. For conversion plating, the thickness of the Ni-based layer is several hundred nanometers. When heat-treated at 450 °C for 90 min, most of the interfaces between Al and AZ31 alloy bond together well. For electroless plating, the thickness of the Ni – P layer is about 10 μm for a plating time of 60 min. When heat-treated at 450 °C for 150 min, good bonding between pure Al and AZ31 can be obtained.


* Correspondence address, Dr. Jie Jinchuan, Laboratory of Special Processing of Raw Materials and School of Material Science and Engineering, Dalian University of Technology, Linggong Road 2, Dalian, Liaoning 116024, China, Tel.: +86 0411 84708940, Fax: +86 0411 84708940, E-mail:

References

[1] F.Yoshid, R.Hino: J. Mater. Process. Technol.63 (1997) 66. 10.1016/S0924-0136(96)02601-5Search in Google Scholar

[2] W.S.Miller, L.Zhuang, J.Bottema, A.J.Wittebrood, P.D.Smet: Mater. Sci. Eng. A280 (2000) 37. 10.1016/S0921-5093(99)00653-XSearch in Google Scholar

[3] J.Sun, X.Song, T.Wang, Y.Yu, M.Sun, Z.Cao, T.Li: Mater. Lett.67 (2012) 21. 10.1016/j.matlet.2011.08.112Search in Google Scholar

[4] T.M.Wang, J.Li, Y.Y.Du, Z.M.Yan, J.B.Sun, S.W.Cai, J.J.Xu, T.J.Li: Mater. Res. Innov.14 (2010) 271. 10.1179/143307510X12777574294786Search in Google Scholar

[5] G.Mahendran, V.Balasubramanian, T.Senthilvelan: Mater. Design.30 (2009) 1240. 10.1016/j.matdes.2008.06.015Search in Google Scholar

[6] L.M.Zhao, Z.D.Zhang: Scripta Mater.58 (2008) 283. 10.1016/j.scriptamat.2007.10.006Search in Google Scholar

[7] E.Hajjari, M.Divandari, S.H.Razavi, S.M.Emami, T.Homma, S.Kamado: J. Mater. Sci.46 (2011) 6491. 10.1007/s10853-011-5595-4Search in Google Scholar

[8] B.Zhu, W.Liang, X.Li: Mat. Sci. Eng. A528 (2011) 6584. 10.1016/j.msea.2010.10.002Search in Google Scholar

[9] X.P.Zhang, T.H.Yang, S.Castagne, J.T.Wang: Mater. Sci. Eng. A528 (2011) 1954. 10.1016/j.msea.2010.10.105Search in Google Scholar

[10] Y.Wang, G.Luo, J.Zhang, Q.Shen, L.Zhang: Mater. Sci. Eng. A559 (2013) 868. 10.1016/j.msea.2012.08.049Search in Google Scholar

[11] Y.Wang, G.Luo, J.Zhang, Q.Shen, L.Zhang: J. Alloys Compd.541 (2012) 458. 10.1016/j.jallcom.2012.06.052Search in Google Scholar

[12] J.Zhang, G.Luo, Y.Wang, Q.Shen, L.Zhang: Mater. Lett.83 (2012) 6. 10.1016/j.matlet.2012.06.014Search in Google Scholar

[13] M.M.Atabaki, J.Idris: Mater. Design.34 (2012) 832. 10.1016/j.matdes.2011.07.021Search in Google Scholar

[14] J.Zhu, T.M.Wang, F.Cao, W.X.Huang, H.W.Fu, Z.N.Chen: Mater. Lett.89 (2012) 137. 10.1016/j.matlet.2012.08.094Search in Google Scholar

[15] L.M.Liu, L.M.Zhao, R.Z.Xu: Mater. Design.30 (2009) 4548. 10.1016/j.matdes.2008.04.066Search in Google Scholar

[16] K.H.Krishnan, S.John, K.N.Srinivasan, J.Praveen, M.Ganesan, P.M.Kavimani: Metall. Mater. Trans. A37 (2006) 1917. 10.1007/s11661-006-0134-7Search in Google Scholar

[17] R.Zeng, Z.Lan, L.Kong, Y.Huang, H.Cui: Surf. Coat. Technol.205 (2011) 3347. 10.1016/j.surfcoat.2010.11.027Search in Google Scholar

[18] C.Gu, J.Lian, G.Li, L.Niu, Z.Jiang: J. Alloys Compd.391 (2005) 104. 10.1016/j.jallcom.2004.07.083Search in Google Scholar

[19] I.Zhitomirsky, A.Petric: Mater. Lett.40 (1999) 263. 10.1016/S0167-577X(99)00087-7Search in Google Scholar

[20] Y.Hamlaoui, F.Pedraza, C.Remazeilles, S.Cohendoz, C.Rébéré, L.Tifouti, J.Creus: Mater. Chem. Phys.113 (2009) 650. 10.1016/j.matchemphys.2008.08.027Search in Google Scholar

[21] M.Dabalà, K.Brunelli, E.Napolitani, M.Magrini: Surf. Coat. Technol.172 (2003) 227. 10.1016/S0257-8972(03)00336-0Search in Google Scholar

[22] Y.Zhong, M.Yang, Z.K.Liu: Calphad.29 (2005) 303. 10.1016/j.calphad.2005.08.004Search in Google Scholar

[23] Y.Y.Wang, G.Q.Luo, J.Zhang, Q.Shen, L.M.Zhang: Mater. Sci. Eng. A559 (2013) 868. 10.1016/j.msea.2012.08.049Search in Google Scholar

[24] Y.Y.Wang, G.Q.Luo, J.Zhang, Q.Shen, L.M.Zhang: J. Alloys Compd.541 (2012) 458. 10.1016/j.jallcom.2012.06.052Search in Google Scholar

[25] A.Kumar, M.Kumar, D.Kumar: Appl. Surf. Sci.258 (2012) 7962. 10.1016/j.apsusc.2011.07.005Search in Google Scholar

[26] B.Lee, H.Jeon, S.Kim, K.W.Kwon, J.W.Kim, H.J.Lee, J.E.Soc: J. Electrochem. Soc.159 (2011) 3.10.1149/2.057201jesSearch in Google Scholar

[27] S.Kundu, S.Chatterjee: Mater. Charact.59 (2007) 631. 10.1016/j.matchar.2007.05.015Search in Google Scholar

[28] B.Y.Huang, G.Z.Qiu: China materials engineering canon, In: Nonferrous Alloys Engineering, vol. 4, Chemical Industry Press, Beijing (2005).Search in Google Scholar

[29] J.R.Davis: ASM Handbook Vol. 02 Properties and selection: Nonferrous alloys and special–purpose materials2nd Ed., ASM International, Ohio (1990).Search in Google Scholar

Received: 2013-09-26
Accepted: 2013-12-12
Published Online: 2014-05-08
Published in Print: 2014-05-13

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Review
  4. Research trends in microwave dielectrics and factors affecting their properties: A review
  5. Original Contributions
  6. Efficiency and work performance of TiNi alloy undergoing B2 ↔ R martensitic transformation
  7. Fabrication of Gasar made from Cu-24 wt.% Mn alloy
  8. Effect of intermediate frequency electromagnetic field on the solidification structure and mechanical properties of direct chill cast Al-8 wt.%Si alloy
  9. Effect of Ni-based conversion coating and Ni–P electroless plating on the bonding process of pure Al and AZ31 alloy
  10. Effect of ball milling time on the synthesis of nanocrystalline merwinite via mechanical activation and heat treatment
  11. Structural and magnetic properties of Fe–Al2O3 soft magnetic composites prepared using the sol–gel method
  12. Improved dielectric performance of barium strontium titanate multilayered capacitor by means of pulsed laser deposition and slow injection sol–gel methods
  13. Effect of heat treatment on the slurry erosion resistance of high strength steel DP980
  14. Development of biomimetic gelatin–chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications
  15. Short Communications
  16. Effects of rolling rate on microstructure and mechanical properties of Mg sheets
  17. Effect of post-weld heat treatment on dissimilar friction stir welded AA6063 and A319 aluminium alloys
  18. Dielectric and magnetic properties of Ba0.8Sr0.2TiO3 – Y3Fe5O12 – YFeO3 composites
  19. Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications
  20. DGM News
  21. DGM News
Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111046/html?lang=en
Scroll to top button