Startseite Optimization of the hot rolling parameters for evaluation of the formability of Nb-microalloyed steel sheet by using the Taguchi method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimization of the hot rolling parameters for evaluation of the formability of Nb-microalloyed steel sheet by using the Taguchi method

  • Mohsen Ayaz , Daavood Mirahmadi Khaki , Nasrollah Bani Mostafa Arab und Ali Noroozi
Veröffentlicht/Copyright: 30. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the influence of major hot rolling process parameters on strain hardening exponent and grain size as criteria for the formability of Nb-microalloyed steel sheet was investigated and an optimum level of parameters by using Taguchi grey relational analysis has been obtained. For this purpose, parameters of roughing, finishing and coiling temperatures were chosen and four levels for these temperatures were considered. Sixteen experiments for each response were conducted based on an orthogonal array of the Taguchi method. Analysis of variance, signal to noise ratios and grey relational grade were calculated in order to optimize strain hardening exponent and grain size of Nb-microalloyed steel sheets, simultaneously. It was observed that the roughing temperature of 1 050 °C; finishing temperature of 850 °C; and coiling temperature of 700 °C are the optimum parameter values producing better formability in terms of strain hardening exponent and grain size. The validity of Taguchi grey relational analysis to process optimization was also well established by means of confirmation tests.


* Correspondence address, Mohsen Ayaz, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran, Tel.: +989377463128, Fax: +982184812124, E-mail:

References

[1] Ya-binCao, Fu-renXiao, Gui-yingQiao, Xiao-bingZhang, BoLiao: Mater. Sci. Eng. A530 (2011) 277. 10.1016/j.msea.2011.09.086Suche in Google Scholar

[2] F.Wang, Q.Zhu, J.Lin, T.A.Dean: J. Mater. Process. Tech.177 (2006) 530. 10.1016/j.jmatprotec.2006.03.197Suche in Google Scholar

[3] J.G.Cheng, J.Zhang, C.C.Chu, J.Zhe: Int. J. Adv. Manuf. Technol.26 (2005) 1222. 10.1007/s00170-004-2096-5Suche in Google Scholar

[4] T.Siwecki, A.Sandberg, W.Roberts, R.Lagneborg in: A.J.Ratz, G.A.Ratz, P.J.Wray (Eds.), Conf. Proc. TMS-AIME, Warrendale, USA (1982) 163.Suche in Google Scholar

[5] J.L.Lanzagorta, D.Jorge-Badiola, I.Gutiérrez: Mater. Sci. Eng. A527 (2010) 934. 10.1016/j.msea.2009.09.007Suche in Google Scholar

[6] B.Verlinden, J.Driver, I.Samajdar, R.D.Doherty in: R.W.Cahn (Ed.), Thermo-mechanical Processing of Metallic Materials, Pergamon Materials Series, Pergamon, UK (2007) 33.Suche in Google Scholar

[7] A.J.DeArdo: Modern Thermomechanical Processing of Microalloyed Steel: A Physical Metallurgy Prespective, Proc. Int. Conference Microalloying ’95, Iron and Steel Society, Inc., Pittsburg, PA, USA (1995) 15.Suche in Google Scholar

[8] M.C.Zhao, K.Yang, Y.Shan: Mat. Sci. Eng. A335 (2002) 14. 10.1016/S0921-5093(01)01904-9Suche in Google Scholar

[9] H.Tamura, H.Sekine, T.Tanaka, C.Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels; Butterworth & Co. Ltd., London (1988).Suche in Google Scholar

[10] D.T.LleweUyn, R.C.Hudd: Steels; Metallurgy and Applications, Reed Educational and Professional Publishing Ltd., Oxford (1998).Suche in Google Scholar

[11] G.S.Peace: Taguchi method: A hands-on approach, Addision-Wesley, New York (1992).Suche in Google Scholar

[12] D.S.Badkar, K.S.Pandey: Int. J. Adv. Manuf. Technol.52 (2011) 1067. 10.1007/s00170-010-2787-zSuche in Google Scholar

[13] M.Kurt, E.Bagci, Y.Kaynak: Int. J. Adv. Manuf. Technol.40 (2009) 458. 10.1007/s00170-007-1368-2Suche in Google Scholar

[14] D.M.Khaki, V.A.Otaaghvar: Iron Steel Res. Int.18 (2011) 585.Suche in Google Scholar

[15] P.L.Ross: Taguchi Techniques for Quality Engineering. McGraw-Hill Book Company, New York (1988).Suche in Google Scholar

[16] R.K.Roy: A Primer on Taguchi Method, Van Nostrand Reinhold, New York (1990).Suche in Google Scholar

[17] S.Basavarajappa, G.Chandramohan, J.P.Davim: Mater. Des.28 (2007) 1393. 10.1016/j.matdes.2006.01.006Suche in Google Scholar

[18] M.S.Phadke: Quality engineering using robust design, Prentice-Hill, Englewood Cliffs, New Jersey (1989).Suche in Google Scholar

[19] N.M.Mehata, S.Kamaruddin: Mater. Proc. Tech.211 (2011) 1989. 10.1016/j.jmatprotec.2011.06.014Suche in Google Scholar

[20] E.Ahmad, T.Manzoor, N.Hussain, N.K.Qazi: Mater. Des.29 (2008) 450. 10.1016/j.matdes.2006.12.022Suche in Google Scholar

[21] M.Gomez, P.Valles, S.F.Medina: Mat. Sci. Eng. A528 (2011) 4761. 10.1016/j.msea.2011.02.087Suche in Google Scholar

[22] A.Bakkaloglu: Mater. Lett.56 (2002) 263. 10.1016/S0167-577X(02)00440-8Suche in Google Scholar

[23] B.Eghbali, A.Abdollah-zadeh: Scripta Mater.53 (2005) 41. 10.1016/j.scriptamat.2005.03.014Suche in Google Scholar

[24] X.S.Yi, W.X.Shi, S.L.Yu, X.H.Li, N.Sun, C.He: Desalination274 (2011) 7. 10.1016/j.desal.2010.10.019Suche in Google Scholar

[25] J.L.Deng: J. Grey Syst.1 (1989) 1.Suche in Google Scholar

[26] C.B.Chen, C.T.Lin, C.W.Chang, C.P.Ho: J. Tech.15 (2000) 25.Suche in Google Scholar

[27] W.J.McTegart, A.Gattins: Hot deformation of austenite, AIME, NY (1976).Suche in Google Scholar

[28] J.L.Lanzagorta, D.Jorge-Badiola, I.Gutiérrez: Mat. Sci. Eng. A527 (2010) 934. 10.1016/j.msea.2009.09.007Suche in Google Scholar

[29] B.K.Panigrahi: B. Mater. Sci.24 (2001) 361. 10.1007/BF02708632Suche in Google Scholar

[30] Q.-Y.Sha, G.-Y.Li, L.-F.Qiao, P.-Y.Yan: Proc. Sino-Swedish Structural Materials Symposium, Swedish (2007) 316.Suche in Google Scholar

Received: 2012-9-11
Accepted: 2013-6-24
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110973/html?lang=de
Button zum nach oben scrollen