Startseite Effect of milling duration on the evolution of shape memory properties in a powder processed Cu–Al–Ni–Ti alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of milling duration on the evolution of shape memory properties in a powder processed Cu–Al–Ni–Ti alloy

  • Mohit Sharma , Gaurav K. Gupta , Muhamed M. Shafeeq , Om P. Modi und Braj K. Prasad
Veröffentlicht/Copyright: 16. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present work describes the effect of milling duration on the properties of a powder metallurgy processed Cu–Al–Ni–Ti shape memory alloy employing mechanical alloying. Powder mixtures milled for different durations were sintered in order to investigate the formation of solid solution and evolution of martensitic structure. The idea was to optimize the duration of milling (mechanical alloying) to obtain chemical homogeneity as well as shape memory properties in the processed material without undergoing extensive post homogenization treatment. The martensitic structure was noted to evolve in the powder mix milled for at least 16 hrs, whereas complete transformation to martensite occurred after milling for 40 hrs. Interestingly, the dissolution of alloying elements (to form the β phase prior to the formation of martensite) was noted to complete partially only during mechanical alloying for 40 hrs and remaining during subsequent sintering for 1 hr. The hot pressed compacts of the powders milled for 40 hrs were chemically homogeneous and consisted of fully martensite phase, which is essential for the realization of shape memory properties. They also revealed almost 100% shape recovery at the applied pre-strain levels of 1 and 2%.


* Correspondence address, Dr. Braj K. Prasad, Near Habibganj Naka, Hoshangabad Road, CSIR-Advanced Materials and Processes Research Institute, Bhopal-462026, India, Tel.: +91-(0)755-2457105, Fax: +91-(0)755-2457042, E-mail: ,

References

[1] S.K.Vajpai, R.K.Dube, P.Chatterjee, S.Sangal: Metall. Mater. Trans. A43 (2012) 2484. 10.1007/s11661-012-1081-0Suche in Google Scholar

[2] R.A.Portier, P.Ochin, A.Pasko, G.E.Monastyrsky, A.V.Gilchuk, V.I.Kolomytsev, Y.N.Koval: J. Alloys Compd. (2012). 10.1016/j.jallcom.2012.02.145.Suche in Google Scholar

[3] C.E.Sobrero, P.La Roca, A.Roatta, R.E.Bolmaro, J.Malarria: Mater. Sci. Eng. A536 (2012) 207. 10.1016/j.msea.2011.12.104Suche in Google Scholar

[4] S.K.Vajpai, R.K.Dube, S.Sangal: Mater. Sci. Eng. A529 (2011) 378. 10.1016/j.msea.2011.09.046Suche in Google Scholar

[5] Z.C.Lin, W.Yu, R.H.Zee, B.A.Chin: Intermetall.8 (2000) 605. 10.1016/S0966-9795(00)00039-XSuche in Google Scholar

[6] U.Sari, T.Kirindi: Mater. Charact.59 (2008) 920. 10.1016/j.matchar.2007.07.017Suche in Google Scholar

[7] L.Delaey, in: GernotKostorz (Ed.), Phase Transformation in Materials, WILEY-VCH, Weinheim (2001) 646.Suche in Google Scholar

[8] T.Tadaki, in: K.Otsuka and C.M.Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge (1998) 97.Suche in Google Scholar

[9] J.L.L.Gama, C.C.Dantas, N.F.Quadros, R.A.S.Ferreira, Y.P.Yadava: Metall. Mater. Trans. A37 (2006) 77. 10.1007/s11661-006-0154-3Suche in Google Scholar

[10] J.V.Humbeeck: J. Alloys Compd.355 (2003) 58. 10.1016/S0925-8388(03)00268-8Suche in Google Scholar

[11] M.Barrado, G.A.Lopez, M.L.No, J. SanJuan: Mater. Sci. Eng. A521–522 (2009) 363. 10.1016/j.msea.2008.10.075Suche in Google Scholar

[12] J. SanJuan, M.L.No, C.A.Schuh: Acta Mater.60 (2012) 4093. 10.1016/j.actamat.2012.04.021Suche in Google Scholar

[13] V.Recarte, R.B.Perez-Saez, E.H.Bocanegra, M.L.No, J. SanJuan: Metall. Mater. Trans. A33 (2002) 2581. 10.1007/s11661-002-0379-8Suche in Google Scholar

[14] M. RezaRezvani, A.Shokuhfar: Mater. Sci. Eng. A532 (2012) 282. 10.1016/j.msea.2011.10.093Suche in Google Scholar

[15] C.Segui, J.Pons, E.Cesari, J.Muntasell, J.Font: Mater. Sci. Eng. A273–275 (1999) 625. 10.1016/S0921-5093(99)00336-6Suche in Google Scholar

[16] G.N.Sure, L.C.Brown: Metall. Trans. A15 (1984) 1613. 10.1007/BF02657801Suche in Google Scholar

[17] M.A.Morris: Acta Metall. Mater.40 (1992) 1573. 10.1016/0956-7151(92)90100-SSuche in Google Scholar

[18] S.M.Tang, C.Y.Chung, W.G.Liu: J. Mater. Process. Tech.63 (1997) 307. 10.1016/S0924-0136(96)02641-6Suche in Google Scholar

[19] Z.Li, Z.Y.Pan, N.Tang, Y.B.Ziang, N.Liu, M.Fang, M.Zheng: Mater. Sci. Eng. A417 (2006) 225. 10.1016/j.msea.2005.10.051Suche in Google Scholar

[20] Z.Xiao, Z.Li, M.Fang, S.Xiong, X.Sheng, M.Zhou: Mater. Sci. Eng. A488 (2008) 266. 10.1016/j.msea.2007.11.037Suche in Google Scholar

[21] S.K.Vajpai, R.K.Dube, S.Sangal: Metall. Mater. Trans. A42 (2011) 3178. 10.1007/s11661-011-0728-6Suche in Google Scholar

[22] A.Ibarra, P.P.Rodriguez, V.Recarte, J.I.Perez-Landazabal, M.L.No, J. SanJuan: Mater. Sci. Eng. A370 (2004) 492. 10.1016/j.msea.2003.06.005Suche in Google Scholar

[23] M.Sharma, S.K.Vajpai, R.K.Dube: Metall. Mater. Trans. A41 (2010) 2905. 10.1007/s11661-010-0351-ySuche in Google Scholar

[24] M.Sharma, S.K.Vajpai, R.K.Dube: Powder Metall.54 (2011) 620. 10.1179/1743290110Y.0000000010Suche in Google Scholar

[25] C.Suryanarayana, M.G.Norton: X-Ray Diffraction – A Practical Approach, Plenum Press, New York (1998). 10.1007/978-1-4899-0148-4Suche in Google Scholar

[26] G.K.Williamson, W.H.Hall: Acta Metall.1 (1953) 22. 10.1016/0001-6160(53)90006-6Suche in Google Scholar

[27] S.K.Vajpai, R.K.Dube, M.Sharma: J. Mater. Sci.44 (2009) 4334. 10.1007/s10853-008-3111-2Suche in Google Scholar

Received: 2012-11-9
Accepted: 2013-3-20
Published Online: 2013-10-16
Published in Print: 2013-09-12

© 2013, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. The interrelated effect of activation energy and grain boundary energy on grain growth in nanocrystalline materials
  5. Microstructural evolution of as-rolled modified 9Cr-1Mo steel during friction stir welding
  6. Effect of milling duration on the evolution of shape memory properties in a powder processed Cu–Al–Ni–Ti alloy
  7. Experimental investigation of phase equilibria in the Co–Cr–W ternary system
  8. Phase equilibria of the Zn–Al–Ti system at 370°C in the Zn-rich region
  9. Enthalpies of mixing in liquid alloys of iron with the lanthanides
  10. Ab-initio studies of some rare-earth borides: CeB2, PrB2, NdB2, and PmB2
  11. Influence of different contents of Si and Cu on the solidification pathways of cast hypoeutectic Al-(5–9)Si-(1–4)Cu (wt.%) alloys
  12. Undercooling of Sn–Ag–Cu alloys: solder balls and solder joints solidification
  13. Nitrogen deficiency and metal dopant induced sub-stoichiometry in titanium nitride thin films: a comparative study
  14. The influence of AlCrN coating on the high-temperature corrosion resistance of Ti-46Al-7Nb alloy in an atmosphere containing 9%O2 + 0.2%HCl + 0.08%SO2 + N2
  15. PEMFC membrane electrode assembly degradation study based on its mechanical properties
  16. Effect of epoxy resin properties on the mechanical properties of carbon fiber/epoxy resin composites
  17. Microstructural aspects of ceramic hollow microspheres reinforced metal matrix composites
  18. Copper/bamboo fabric composite prepared via a silver catalytic electroless deposition process for electromagnetic shielding
  19. People
  20. Dr. Herbert Karl Schmid
  21. Ludwig Gauckler
  22. DGM News
  23. DGM News
Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110941/html
Button zum nach oben scrollen