Startseite Magnetic and electric properties of nanoparticles of Ni-substituted ferrites synthesized using a microwave refluxing process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Magnetic and electric properties of nanoparticles of Ni-substituted ferrites synthesized using a microwave refluxing process

  • Nand Kishore Prasad , Abhinandan Naulakha , Neeraj Jha , Sher Singh Meena , Dhirendra Bahadur , Om Prakash und Rajiv Kumar Mandal
Veröffentlicht/Copyright: 23. November 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Microwave refluxing was found to be a suitable method to produce single phase magnetic nanoparticles of NixFe3−xO4. Ethylene glycol employed in the synthesis plays a crucial role in restricting the particle size to nano dimensions. X-ray diffraction studies, Mössbauer spectroscopy and magnetic measurements suggest that as-prepared samples were small in size (∼15 nm) and hence display low saturation magnetization values (44–60 emu g−1). NixFe3−xO4 transforms into γ-NiyFe2−yO3 and α-NiyFe2−yO3 after sintering at 720 and 1020 K respectively as indicated by X-ray diffraction patterns. This was also confirmed by resistivity measurements. The electrical properties of the two transformed phases were comparable to their bulk values. It has also been found that a large substitution of Ni stabilizes γ-phase at higher temperature.


e Correspondence address, Dr. Nand Kishore Prasad, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India, Tel.: +91-5422369346, Fax: +91-5422639478, E-mail:

References

[1] BeanC.P.: J. Appl. Phys.26 (1955) 1381. 10.1063/1.1721848Suche in Google Scholar

[2] CullityB.D.: Introduction to Magnetic Materials, Addison-Wesley Pub. Comp., Philippines (1972).4642435Suche in Google Scholar

[3] DuguetE., MornetS., VasseurS., DevoisselleJ.M.: Nanomedicine1 (2006) 157.1771610510.2217/17435889.1.2.157Suche in Google Scholar

[4] LuA., SalabasE.L., SchüthF.: Angew. Chem. Int. Ed.46 (2007) 1222.1759260810.1002/anie.200602866Suche in Google Scholar

[5] HergtR., HiergeistR., HilgerI., KaiserW.A., LapatnikovY., MargelS., RichterU.: J. Magn. Magn. Mater.270 (2004) 345. 10.1016/j.jmmm.2003.09.001Suche in Google Scholar

[6] RaoC.N.R., MullerA., CheethamA.K.: Chemistry of nanomaterials, Wiley-VCH, Weinheim (2004). 10.1002/352760247X Suche in Google Scholar

[7] PrasadN.K., BahadurD., VasseurS., DuguetE., in: LukehartC. M. and ScottR. A. (Eds.), Biomedical applications of magnetic nanoparticles, Nanomaterials: Inorganic and Bioinorganic Perspectives, John Wiley & Sons, Ltd. (2008).Suche in Google Scholar

[8] CornellR.M., SchwertmannU.: The Iron oxides: structure, properties, reactions, occurrences and uses, Wiley-VCH, Weinheim (2003).10.1002/3527602097Suche in Google Scholar

[9] NikumbhA.K., SayankarP.I., ChaskarM.G.: J. Magn. Magn. Mater.97 (1991) 119. 10.1016/0304-8853(91)90169-BSuche in Google Scholar

[10] XuC., JunT., MiuraN., YamazoeN.: Chem. Lett.3 (1990) 441. 10.1246/cl.1990.441Suche in Google Scholar

[11] GiriJ., SriharshaT., BahadurD.: J. Mater. Chem.14 (2004) 875. 10.1039/b310668cSuche in Google Scholar

[12] HeuserJ.A., SpendelW.U., PisarenkoA.N., YuC., PechanM.J., PaceyG.E.: J. Mater. Sci.42 (2007) 9057. 10.1007/s10853-007-1833-1Suche in Google Scholar

[13] WangW. W.: Mater. Chem. Phys.108 (2008) 227. 10.1016/j.matchemphys.2007.09.022Suche in Google Scholar

[14] WangL., RenJ., WangY., LiuX., WangY.: J. Alloys Compd.490 (2010) 656. 10.1016/j.jallcom.2009.09.031Suche in Google Scholar

[15] DuqueJ.G.S., SouzaE.A., MenesesC.T., KubotaL.: Physica B: Cond. Mat.398 (2007) 287. 10.1016/j.physb.2007.04.030Suche in Google Scholar

[16] BidS., SahuP., PradhanS.K.: Physica E39 (2007) 175. 10.1016/j.physe.2007.01.005Suche in Google Scholar

[17] Gopal ReddyC.V., ManoramaS.V., RaoV.J.: Sensors and Actuators B55 (1999) 90. 10.1016/S0925-4005(99)00112-4Suche in Google Scholar

[18] IftimieN., RezlescuE., PopaP. D., RezlescuN., OptoelectronJ.: Adv. Mater.7 (2005) 911.Suche in Google Scholar

[19] Justin JoseyphusR., KodamaD., MatsumotoT., SatoY., JeyadevanaB., TohjiK.: J. Magn. Magn. Mater.310 (2007) 2393. 10.1016/j.jmmm.2006.10.1132Suche in Google Scholar

[20] PrasadN.K., RathinasamyK., PandaD., BahadurD.: J. Mater. Chem.17 (2007) 5042. 10.1039/b708156aSuche in Google Scholar

[21] RaoK.J., VaidhyanathanB., GanguliM., RamakrishnanP.A.: Chem. Mater.11 (1999) 882. 10.1021/cm9803859Suche in Google Scholar

[22] PrasadN.K., PandaD., SinghS., MukadamM.D., YusufS.M., BahadurD.: J. Appl. Phys.97 (2005) 10Q903. 10.1063/1.1849056Suche in Google Scholar

[23] ShannonR.D.: Acta Crystall.A32 (1976) 751.10.1107/S0567739476001551Suche in Google Scholar

[24] PrasadN.K., GohriV., BahadurD.: J. Nanosci. Nanotech.11 (2011) 2710. 10.1166/jnn.2011.2694Suche in Google Scholar

[25] RobbinsM., WertheimG.K., SherwoodR.C. and BuchananD.N.E.: J. Phys. Chem. Solids32 (1971) 717. 10.1016/S0022-3697(71)80144-0Suche in Google Scholar

[26] ViauG., Fievet-VincentF., FievetF.: J. Mater. Chem.6 (1996) 1047. 10.1039/jm9960601047Suche in Google Scholar

[27] JoseyphusR.J., KodamaD., MatsumotoT., SatoY., JeyadevanB., Tohji: J. Magn. Magn. Mater.310 (2007) 2393. 10.1016/j.jmmm.2006.10.1132Suche in Google Scholar

[28] MuradE., SchwertmannU.: Clays Clay Miner.41 (1993) 111. 10.1346/CCMN.1993.0410112Suche in Google Scholar

[29] DekaS., JoyP.A.: J. Mater. Chem.17 (2007) 453. 10.1039/b616120kSuche in Google Scholar

[30] HousdenJ., de SaA., O’ReillyW.: J. Geomagn. Geoelectr.40 (1988) 63. 10.5636/jgg.40.63Suche in Google Scholar

[31] CoeyJ.: Phys. Rev. Lett.27 (1971) 1140. 10.1103/PhysRevLett.27.1140Suche in Google Scholar

Received: 2012-4-30
Accepted: 2012-10-24
Published Online: 2012-11-23
Published in Print: 2013-07-11

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110909/html?lang=de
Button zum nach oben scrollen