Thermally activated redox-processes in V2O5-x under high oxygen partial pressures investigated by means of impedance spectroscopy and Rutherford backscattering
-
Manuel Harth
, Rüdiger Mitdank , Daniela Habel , Oliver Görke , Michael Tovar , Helmut Winter and Helmut Schubert
Electrochemical methods have been applied in the catalytic system V2O5 in order to investigate the redox properties and their correlation with catalytic properties. Temperature programmed conductivity measurements using electrochemical impedance spectroscopy enabled us to determine the onset of a thermally induced reduction at about 380°C. Rutherford backscattering analysis provides evidence for a reduction from V+5 to V+4. Experiments under different oxygen partial pressures showed that the vanadyl oxygen is involved in the reduction process and it was possible to determine the energy of formation for an oxygen vacancy as 1.23 ± 0.03 eV. The removability of the vanadyl oxygen is assumed to be a key factor for the catalytic activity so that it can be characterized by macroscopic transport properties.
References
[1] WeckhuysenB.M., KellerD.E.: Catal. Today78 (2003) 25. 10.1016/S0920-5861(02)00323-1Search in Google Scholar
[2] BondG.C., TahirF.: Appl. Catal.71 (1991) 1. 10.1016/0166-9834(91)85002-DSearch in Google Scholar
[3] MarsP., van KrevelenD.W.: Chem. Eng. Sci. Special Suppl.3 (1954) 41.Search in Google Scholar
[4] HaberJerzy in: ErtlG., KnözingerH., SchüthF., WeitkampJ. (Eds.), Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim (2008) 3367.Search in Google Scholar
[5] DoornkampC., ClementM., GaoX., DeoG., WachsI.E., PonecV.: J. Catal.185 (1999) 415. 10.1006/jcat.1999.2490Search in Google Scholar
[6] NovákováJ.: Cat. Rev. – Sci. Eng.4 (1971) 77. 10.1080/01614947108075486Search in Google Scholar
[7] JanssenF.J.J.G., van den KerkhofF.M.G., BoschH., RossJ.R.H.: J. Phys. Chem.91 (1987) 5921. 10.1021/j100305a020Search in Google Scholar
[8] ChenK., KhodakovA., YangJ., BellA.T., IglesiaE.: J. Catal.186 (1999) 325. 10.1006/jcat.1999.2510Search in Google Scholar
[9] HirotaK., KeraY., TerataniS.: J. Phys. Chem.72 (1968) 3133. 10.1021/j100847a002Search in Google Scholar
[10] ChenK., BellA.T., IglesiaE.: J. Phys. Chem. B104 (2000) 1292. 10.1021/jp0000228Search in Google Scholar
[11] PerlsteinJ.H.: J. Solid State Chem.3 (1971) 217. 10.1016/0022-4596(71)90031-4Search in Google Scholar
[12] VolzhenskiiD.S., PashkovskiiM.V.: Sov. Phys. Solid State11 (1969) 950.Search in Google Scholar
[13] IoffeV.A., PatrinaI.B.: Phys. Status Solidi40 (1970) 389. 10.1002/pssb.19700400140Search in Google Scholar
[14] NagelsP., DenayerM.: Proc. Xth Int. Conf. Physics Semiconductors (1970) 321.Search in Google Scholar
[15] HaemersJ., BaetensE., VennikJ.: Phys. Status Solidi (A)20 (1973) 381. 10.1002/pssa.2210200140Search in Google Scholar
[16] SanchezC., HenryM., GrenetJ.C., LivageJ.: J. Phys. C15 (1982) 7133. 10.1088/0022-3719/15/35/011Search in Google Scholar
[17] KachiS., TakadaT., KosugeK.: J. Phys. Soc. Jpn.18 (1963) 1839. 10.1143/JPSJ.18.106Search in Google Scholar
[18] PatrinaI.B., IoffeV.A.: Sov. Phys. Solid State6 (1965) 2581.Search in Google Scholar
[19] AllersmaT., HakimR., KennedyT.N., MackenzieJ.D.: J. Chem. Phys.46 (1967) 154. 10.1063/1.1840366Search in Google Scholar
[20] HaberJ., WitkoM., TokarzR.: Appl. Catal., A157 (1997) 3. 10.1016/S0926-860X(97)00017-3Search in Google Scholar
[21] NovákováJ.: Cat. Rev. – Sci. Eng.4 (1971) 77. 10.1080/01614947108075486Search in Google Scholar
[22] ZolyanT.S., RegelA.R.: Sov. Phys. Solid State6 (1964) 1189.Search in Google Scholar
[23] SimardG.L., StegerJ.F., ArnottR.J.: Ind. Eng. Chem.47 (1955) 1424. 10.1021/ie50547a047Search in Google Scholar
[24] SauerJ., DöblerJ.: Dalton Trans. (2004) 3116.10.1039/B402873BSearch in Google Scholar
[25] TodorovaT.K., Ganduglia-PirovanoM.V., SauerJoachim: J. Phys. Chem. B109 (2005) 23523.1637532710.1021/jp053899lSearch in Google Scholar
[26] BrázdováV., Ganduglia-PirovanoM.V., SauerJ.: J. Phys. Chem. B109 (2005) 23532.1637532810.1021/jp046055vSearch in Google Scholar
[27] TodorovaT.K., Ganduglia-PirovanoM.V., SauerJ.: J. Phys. Chem. C111 (2007) 5141. 10.1021/jp067137hSearch in Google Scholar
[28] HofmannA., Ganduglia-PirovanoM.V., SauerJ.: J. Phys. Chem. C113 (2009) 18191. 10.1021/jp808560pSearch in Google Scholar
[29] EnjalbertR., GalyJ.: Acta Crystallogr., Sect. C: Cryst. Struct. Commun.42 (1986) 1467. 10.1107/S0108270186091825Search in Google Scholar
[30] RickertH.: Electrochemistry of Solids, Springer-VerlagBerlin (1982).Search in Google Scholar
[31] MitdankR., HabelD., GörkeO., HarthM., SchubertH., WinterH.: Nucl. Instrum. Methods Phys. Res., Sect. B269 (2011) 345. 10.1016/j.nimb.2010.11.047Search in Google Scholar
[32] BorosJ.: Z. Phys. A126 (1949) 721.Search in Google Scholar
[33] IrvineJ.T.S., SinclairD.C., WestA.R.: Adv. Mater.2 (1990) 132. 10.1002/adma.19900020304Search in Google Scholar
[34] WangC., CaiY., WachsI.E.: Langmuir15 (1999) 1223. 10.1021/la980618aSearch in Google Scholar
[35] BochP., NiepceJ.-C.: Ceramic Materials: processes, properties and applications, ISTE, London (2007).10.1002/9780470612415Search in Google Scholar
[36] ClauwsP., VennikJ.: Phys. Status Solidi66 (1974) 553. 10.1002/pssb.2220660218Search in Google Scholar
[37] FiermansL., ClauwsP., LambrechtW., VandenbrouckeL., VennikJ.: Phys. Status Solidi A59 (1980) 485. 10.1002/pssa.2210590211Search in Google Scholar
[38] GoclonJ., GrybosR., WitkoM., HafnerJ.: Phys. Rev. B79 (2009) 075439. 10.1103/PhysRevB.79.075439Search in Google Scholar
[39] MacChesneyJ.B., GuggenheimH.J.: J. Phys. Chem. Solids30 (1969) 225. 10.1016/0022-3697(69)90303-5Search in Google Scholar
[40] HaberJ., WitkoM., TokarzR.: Appl. Catal., A157 (1997) 3. 10.1016/S0926-860X(97)00017-3Search in Google Scholar
[41] BenmoussaM., IbnouelghaziE., BennounaA., AmezianeE.L.: Thin Solid Films265 (1995) 22. 10.1016/0040-6090(95)06617-9Search in Google Scholar
[42] WachsI.E., BriandL.E., JehngJ.-M., BurchamL., GaoX.: Catal. Today57 (2000) 323. 10.1016/S0920-5861(99)00343-0Search in Google Scholar
[43] LambrechtW., Djafari-RouhaniB., LannooM., ClauwsP., FiermansI., VennikJ.: J. Phys. C13 (1980) 2503. 10.1088/0022-3719/13/13/007Search in Google Scholar
[44] RamanaC.V., HussainO.M., Srinivasulu NaiduB., ReddyP.J.: Thin Solid Films305 (1997) 219. 10.1016/S0040-6090(97)00141-7Search in Google Scholar
[45] VratnyF., MicaleF.: Trans. Faraday Soc.59 (1963) 2739. 10.1039/tf9635902739Search in Google Scholar
[46] Ganduglia-PirovanoM.V., HofmannA., SauerJ.: Surf. Sci. Rep.62 (2007) 219. 10.1016/j.surfrep.2007.03.002Search in Google Scholar
[47] ShahP.R., KhaderM.M., VohsJ.M., GorteR.J.: J. Phys. Chem. C112 (2008) 2613. 10.1021/jp710516dSearch in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2012
- Original Contributions
- Effect of microstructure on the wear resistance of borided Fe–Cr alloys
- Microstructure evolution in pure aluminium processed by equal channel angular pressing at elevated temperature
- Interfacial reactions between SAC405 and SACNG lead-free solders with Au/Ni(P)/Cu substrate reflowed using the CO2 laser and hot-air methods
- Experimental determination of the phase relations of the Co–Pt–Dy system at 773 K
- Boron partitioning between SiO2–CaO–MgO slags and liquid silicon at controlled nitrogen potential
- Thermally activated redox-processes in V2O5-x under high oxygen partial pressures investigated by means of impedance spectroscopy and Rutherford backscattering
- Effect of aluminium addition on densification behaviour and microstructural features of P/M processed Cu–TiC composites
- Effect of ZrO2 impurity on promoting reactive sintering of ZrB2–SiC–ZrC composites
- Magnetic and electric properties of nanoparticles of Ni-substituted ferrites synthesized using a microwave refluxing process
- Optimisation of total roll power using genetic algorithms in a compact strip production plant
- Modeling the correlation between yield strength, chemical composition and ultimate tensile strength of X70 pipeline steels by means of gene expression programming
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2012
- Original Contributions
- Effect of microstructure on the wear resistance of borided Fe–Cr alloys
- Microstructure evolution in pure aluminium processed by equal channel angular pressing at elevated temperature
- Interfacial reactions between SAC405 and SACNG lead-free solders with Au/Ni(P)/Cu substrate reflowed using the CO2 laser and hot-air methods
- Experimental determination of the phase relations of the Co–Pt–Dy system at 773 K
- Boron partitioning between SiO2–CaO–MgO slags and liquid silicon at controlled nitrogen potential
- Thermally activated redox-processes in V2O5-x under high oxygen partial pressures investigated by means of impedance spectroscopy and Rutherford backscattering
- Effect of aluminium addition on densification behaviour and microstructural features of P/M processed Cu–TiC composites
- Effect of ZrO2 impurity on promoting reactive sintering of ZrB2–SiC–ZrC composites
- Magnetic and electric properties of nanoparticles of Ni-substituted ferrites synthesized using a microwave refluxing process
- Optimisation of total roll power using genetic algorithms in a compact strip production plant
- Modeling the correlation between yield strength, chemical composition and ultimate tensile strength of X70 pipeline steels by means of gene expression programming
- DGM News
- DGM News