Home Thermally activated redox-processes in V2O5-x under high oxygen partial pressures investigated by means of impedance spectroscopy and Rutherford backscattering
Article
Licensed
Unlicensed Requires Authentication

Thermally activated redox-processes in V2O5-x under high oxygen partial pressures investigated by means of impedance spectroscopy and Rutherford backscattering

  • Manuel Harth , Rüdiger Mitdank , Daniela Habel , Oliver Görke , Michael Tovar , Helmut Winter and Helmut Schubert
Published/Copyright: November 23, 2012
Become an author with De Gruyter Brill

Electrochemical methods have been applied in the catalytic system V2O5 in order to investigate the redox properties and their correlation with catalytic properties. Temperature programmed conductivity measurements using electrochemical impedance spectroscopy enabled us to determine the onset of a thermally induced reduction at about 380°C. Rutherford backscattering analysis provides evidence for a reduction from V+5 to V+4. Experiments under different oxygen partial pressures showed that the vanadyl oxygen is involved in the reduction process and it was possible to determine the energy of formation for an oxygen vacancy as 1.23 ± 0.03 eV. The removability of the vanadyl oxygen is assumed to be a key factor for the catalytic activity so that it can be characterized by macroscopic transport properties.


d Correspondence address, Dr.-Ing. Oliver Görke, Institut für Werkstoffwissenschaften, Fakultät III, Hardenbergstraße 40, 10623 Berlin, Germany, Tel.: +49(0)30314-24833, Fax: +49(0)30314-28534, E-mail:

References

[1] WeckhuysenB.M., KellerD.E.: Catal. Today78 (2003) 25. 10.1016/S0920-5861(02)00323-1Search in Google Scholar

[2] BondG.C., TahirF.: Appl. Catal.71 (1991) 1. 10.1016/0166-9834(91)85002-DSearch in Google Scholar

[3] MarsP., van KrevelenD.W.: Chem. Eng. Sci. Special Suppl.3 (1954) 41.Search in Google Scholar

[4] HaberJerzy in: ErtlG., KnözingerH., SchüthF., WeitkampJ. (Eds.), Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim (2008) 3367.Search in Google Scholar

[5] DoornkampC., ClementM., GaoX., DeoG., WachsI.E., PonecV.: J. Catal.185 (1999) 415. 10.1006/jcat.1999.2490Search in Google Scholar

[6] NovákováJ.: Cat. Rev. – Sci. Eng.4 (1971) 77. 10.1080/01614947108075486Search in Google Scholar

[7] JanssenF.J.J.G., van den KerkhofF.M.G., BoschH., RossJ.R.H.: J. Phys. Chem.91 (1987) 5921. 10.1021/j100305a020Search in Google Scholar

[8] ChenK., KhodakovA., YangJ., BellA.T., IglesiaE.: J. Catal.186 (1999) 325. 10.1006/jcat.1999.2510Search in Google Scholar

[9] HirotaK., KeraY., TerataniS.: J. Phys. Chem.72 (1968) 3133. 10.1021/j100847a002Search in Google Scholar

[10] ChenK., BellA.T., IglesiaE.: J. Phys. Chem. B104 (2000) 1292. 10.1021/jp0000228Search in Google Scholar

[11] PerlsteinJ.H.: J. Solid State Chem.3 (1971) 217. 10.1016/0022-4596(71)90031-4Search in Google Scholar

[12] VolzhenskiiD.S., PashkovskiiM.V.: Sov. Phys. Solid State11 (1969) 950.Search in Google Scholar

[13] IoffeV.A., PatrinaI.B.: Phys. Status Solidi40 (1970) 389. 10.1002/pssb.19700400140Search in Google Scholar

[14] NagelsP., DenayerM.: Proc. Xth Int. Conf. Physics Semiconductors (1970) 321.Search in Google Scholar

[15] HaemersJ., BaetensE., VennikJ.: Phys. Status Solidi (A)20 (1973) 381. 10.1002/pssa.2210200140Search in Google Scholar

[16] SanchezC., HenryM., GrenetJ.C., LivageJ.: J. Phys. C15 (1982) 7133. 10.1088/0022-3719/15/35/011Search in Google Scholar

[17] KachiS., TakadaT., KosugeK.: J. Phys. Soc. Jpn.18 (1963) 1839. 10.1143/JPSJ.18.106Search in Google Scholar

[18] PatrinaI.B., IoffeV.A.: Sov. Phys. Solid State6 (1965) 2581.Search in Google Scholar

[19] AllersmaT., HakimR., KennedyT.N., MackenzieJ.D.: J. Chem. Phys.46 (1967) 154. 10.1063/1.1840366Search in Google Scholar

[20] HaberJ., WitkoM., TokarzR.: Appl. Catal., A157 (1997) 3. 10.1016/S0926-860X(97)00017-3Search in Google Scholar

[21] NovákováJ.: Cat. Rev. – Sci. Eng.4 (1971) 77. 10.1080/01614947108075486Search in Google Scholar

[22] ZolyanT.S., RegelA.R.: Sov. Phys. Solid State6 (1964) 1189.Search in Google Scholar

[23] SimardG.L., StegerJ.F., ArnottR.J.: Ind. Eng. Chem.47 (1955) 1424. 10.1021/ie50547a047Search in Google Scholar

[24] SauerJ., DöblerJ.: Dalton Trans. (2004) 3116.10.1039/B402873BSearch in Google Scholar

[25] TodorovaT.K., Ganduglia-PirovanoM.V., SauerJoachim: J. Phys. Chem. B109 (2005) 23523.1637532710.1021/jp053899lSearch in Google Scholar

[26] BrázdováV., Ganduglia-PirovanoM.V., SauerJ.: J. Phys. Chem. B109 (2005) 23532.1637532810.1021/jp046055vSearch in Google Scholar

[27] TodorovaT.K., Ganduglia-PirovanoM.V., SauerJ.: J. Phys. Chem. C111 (2007) 5141. 10.1021/jp067137hSearch in Google Scholar

[28] HofmannA., Ganduglia-PirovanoM.V., SauerJ.: J. Phys. Chem. C113 (2009) 18191. 10.1021/jp808560pSearch in Google Scholar

[29] EnjalbertR., GalyJ.: Acta Crystallogr., Sect. C: Cryst. Struct. Commun.42 (1986) 1467. 10.1107/S0108270186091825Search in Google Scholar

[30] RickertH.: Electrochemistry of Solids, Springer-VerlagBerlin (1982).Search in Google Scholar

[31] MitdankR., HabelD., GörkeO., HarthM., SchubertH., WinterH.: Nucl. Instrum. Methods Phys. Res., Sect. B269 (2011) 345. 10.1016/j.nimb.2010.11.047Search in Google Scholar

[32] BorosJ.: Z. Phys. A126 (1949) 721.Search in Google Scholar

[33] IrvineJ.T.S., SinclairD.C., WestA.R.: Adv. Mater.2 (1990) 132. 10.1002/adma.19900020304Search in Google Scholar

[34] WangC., CaiY., WachsI.E.: Langmuir15 (1999) 1223. 10.1021/la980618aSearch in Google Scholar

[35] BochP., NiepceJ.-C.: Ceramic Materials: processes, properties and applications, ISTE, London (2007).10.1002/9780470612415Search in Google Scholar

[36] ClauwsP., VennikJ.: Phys. Status Solidi66 (1974) 553. 10.1002/pssb.2220660218Search in Google Scholar

[37] FiermansL., ClauwsP., LambrechtW., VandenbrouckeL., VennikJ.: Phys. Status Solidi A59 (1980) 485. 10.1002/pssa.2210590211Search in Google Scholar

[38] GoclonJ., GrybosR., WitkoM., HafnerJ.: Phys. Rev. B79 (2009) 075439. 10.1103/PhysRevB.79.075439Search in Google Scholar

[39] MacChesneyJ.B., GuggenheimH.J.: J. Phys. Chem. Solids30 (1969) 225. 10.1016/0022-3697(69)90303-5Search in Google Scholar

[40] HaberJ., WitkoM., TokarzR.: Appl. Catal., A157 (1997) 3. 10.1016/S0926-860X(97)00017-3Search in Google Scholar

[41] BenmoussaM., IbnouelghaziE., BennounaA., AmezianeE.L.: Thin Solid Films265 (1995) 22. 10.1016/0040-6090(95)06617-9Search in Google Scholar

[42] WachsI.E., BriandL.E., JehngJ.-M., BurchamL., GaoX.: Catal. Today57 (2000) 323. 10.1016/S0920-5861(99)00343-0Search in Google Scholar

[43] LambrechtW., Djafari-RouhaniB., LannooM., ClauwsP., FiermansI., VennikJ.: J. Phys. C13 (1980) 2503. 10.1088/0022-3719/13/13/007Search in Google Scholar

[44] RamanaC.V., HussainO.M., Srinivasulu NaiduB., ReddyP.J.: Thin Solid Films305 (1997) 219. 10.1016/S0040-6090(97)00141-7Search in Google Scholar

[45] VratnyF., MicaleF.: Trans. Faraday Soc.59 (1963) 2739. 10.1039/tf9635902739Search in Google Scholar

[46] Ganduglia-PirovanoM.V., HofmannA., SauerJ.: Surf. Sci. Rep.62 (2007) 219. 10.1016/j.surfrep.2007.03.002Search in Google Scholar

[47] ShahP.R., KhaderM.M., VohsJ.M., GorteR.J.: J. Phys. Chem. C112 (2008) 2613. 10.1021/jp710516dSearch in Google Scholar

Received: 2010-2-12
Accepted: 2012-10-4
Published Online: 2012-11-23
Published in Print: 2013-07-11

© 2013, Carl Hanser Verlag, München

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110906/html
Scroll to top button