Startseite Modeling the correlation between yield strength, chemical composition and ultimate tensile strength of X70 pipeline steels by means of gene expression programming
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modeling the correlation between yield strength, chemical composition and ultimate tensile strength of X70 pipeline steels by means of gene expression programming

  • Gholamreza Khalaj und Mohammad-Javad Khalaj
Veröffentlicht/Copyright: 5. Dezember 2012
Veröffentlichen auch Sie bei De Gruyter Brill

In the present work, the ultimate tensile strength of steel made using thermomechanically controlled processing has been modeled by means of gene expression programming. To build the model, training and testing using experimental results from 104 specimens were conducted. The data used as inputs in gene expression programming models are arranged in a format of six parameters that cover the carbon equivalent, based upon the International Institute of Welding equation and the chemical portion of the Ito-Bessyo equation, the sum of the Nb, V, and Ti, the sum of the Nb and V, the sum of the Cr, Mo, Ni, and Cu contents and yield strength. The training and testing results in gene expression programming models have shown a strong potential for correlating the ultimate tensile strength to yield strength and chemical composition of X70 pipeline steels.


2 Correspondence address, Gholamreza Khalaj, Assistant professor, Department of Technical and Engineering Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran, Tel.: +982552241511, Fax: +982552241501, E-mail:

References

[1] TamuraC.O.I., TanakaT., SekineH.: Thermomechanical processing of high-strength low-alloy steels, Butterworths, Boston (1988).Suche in Google Scholar

[2] MilitzerM., HawboltE., MeadowcroftT.: Metall. Mater. Trans. A31 (2000) 1247. 10.1007/s11661-000-0120-4Suche in Google Scholar

[3] GladmanT.: The physical matallurgy of microalloyed steels, The Institute of Materials, University Press, Cambridge (1997).Suche in Google Scholar

[4] CalvoJ., JungI.H., ElwazriA.M., BaiD., YueS.: Mater. Sci. Eng. A520 (2009) 90. 10.1016/j.msea.2009.05.027Suche in Google Scholar

[5] ThompsonS.W., ColvinD.J., KraussG.: Metall. Mater. Trans.A21 (1990) 1493. 10.1007/BF02672564Suche in Google Scholar

[6] ZhaoM.C., YangK., XiaoF.R., ShanY.Y.: Mater. Sci. Eng.A355 (2003) 126. 10.1016/S0921-5093(03)00074-1Suche in Google Scholar

[7] Mousavi AnijdanS.H., SanjariM., YueS.: Effects of cooling rate, and cool deformation on mechanical properties and microstructure of a hot rolled Nb-microalloyed steel. Pittsburgh: Materials Science & Technology2009 Conference and Exhibition (MS&T Partner Societies) (Oct 2009) 1308.Suche in Google Scholar

[8] Mousavi AnijdanS.H., RezaeianA., YueS.: Effect of holding time before cool deformation on microstructure evolution and mechanical properties of microalloyed steels. Pittsburgh, Pennsylvania: Materials Science & Technology 2009 Conference and Exhibition (MS&T Partner Societies) (Oct 2009) 1329.Suche in Google Scholar

[9] Mousavi AnijdanS.H., RezaeianA., YueS.: Mater. Charact.63 (2012) 2738. 10.1016/j.matchar.2011.11.003Suche in Google Scholar

[10] TaylorK.A.: Scr. Metall. Mater.32 (1995) 7. 10.1016/S0956-716X(99)80002-8Suche in Google Scholar

[11] MilaniA.A., NazariA.: Int. J. Damage Mech.21 (2012) 465. 10.1177/1056789511406561Suche in Google Scholar

[12] NazariA., KhalajG., DidehvarN.: Int. J. Damage Mech.21 (2012) 623. 10.1177/1056789510397073Suche in Google Scholar

[13] CottrellG.A., KempR., BhadeshiaH.K.D.K., OdetteG.R., YamamotoT.: J. Nucl. Mater.367-370 (2007) 603. 10.1016/j.jnucmat.2007.03.103Suche in Google Scholar

[14] KozaJ.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA (1992).Suche in Google Scholar

[15] RumelhartD.E., HintonG.E., WilliamR.J.: Learning internal representation by error propagation. In: RumelhartD.E., McClellandJ.L., (Eds.), Proceeding Parallel Distributed Processing Foundation, vol. 1. MIT Press, Cambridge (1986).Suche in Google Scholar

[16] LiuS.W., HuangJ.H., SungJ.C., LeeC.C.: Comput. Meth. Appl. Mech. Eng.191 (2002) 2831. 10.1016/S0045-7825(01)00359-0Suche in Google Scholar

[17] AndersonJ.A.: IEEE Trans. Syst. Man Cybern. V.SMC-13 (1983) 799. 10.1109/TSMC.1983.6313074Suche in Google Scholar

[18] HopfieldJ.J.: Proc. Natl. Acad. Sci.79 (1982) 2554.695341310.1073/pnas.79.8.2554Suche in Google Scholar

[19] CevikA., SonebiM.: Constr. Build. Mater.23 (2009) 2614. 10.1016/j.conbuildmat.2009.02.012Suche in Google Scholar

[20] API Specifications 5L, Specifications for Line Pipe, forty-fourth ed., American Petroleum Institute (2007).Suche in Google Scholar

[21] Annual Book of ASTM Standards, Metals Test Methods and Analytical, Section 3, volume 3.01, ASTM, Easton, USA, pp A751, E8, E23-93a, E45 (1997).Suche in Google Scholar

[22] TopcuI.B., SarıdemirM.: Comput. Mater. Sci.41 (2008) 305. 10.1016/j.commatsci.2007.04.009Suche in Google Scholar

Received: 2012-8-7
Accepted: 2012-11-5
Published Online: 2012-12-05
Published in Print: 2013-07-11

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110910/html
Button zum nach oben scrollen