Fatigue induced deformation of taper connections in dental titanium implants
-
Simon Zabler
, Tatjana Rack , Alexander Rack and Katja Nelson
Abstract
The present study deals with in-situ microgap measurements in the internal taper connections of dental implants. Using X-ray phase contrast microtomography, the connecting interface between implant and abutment is probed non-destructively in three dimensions. Interference fringes across the conical interface occur due to the presence of microgaps, their intensity being a measure of the gap's width. Thus, for each point on the interface, interferences are extracted from the volumetric image in terms of normal projection maps which are, at selected points, compared to forward simulations to quantify the local gap width. Four designs of dental implants are tested in the “as-received” state as well as after application of cyclic extra-axial load. Results show different degrees of microgap opening by cyclic deformation according to the implants' design as well as a great amount of detail on the actual interface, i. e. fretting scars, grooves and wear debris.
References
[1] P.P.Binon: Int. J. Oral Maxillofac. Impl.1 (2000) 76.Search in Google Scholar
[2] S.A.Hoyer, C.M.Stanford, S.Buranadham, T.Fridrich, J.Wagner, D.Gratton: J. Prosth. Dent.85 (2001) 599. 10.1067/mpr.2001.11525010.1067/mpr.2001.115250Search in Google Scholar
[3] A.Khraisat, R.Stegaroiu, S.Nomura, O.Miyakawa: J. Prosth. Dent.88 (2002) 604. 10.1067/mpr.2002.12938410.1067/mpr.2002.129384Search in Google Scholar
[4] M.A.Khan, R.L.Williams, D.F.Williams: Biomater.17 (1996) 2117. 10.1016/0142-9612(96)00029-410.1016/0142-9612(96)00029-4Search in Google Scholar
[5] S.Fayeulle, P.Blanchard, L.Vincent: Tribol. Transact.2 (1993) 267. 10.1080/1040200930898315810.1080/10402009308983158Search in Google Scholar
[6] M.R.Norton: Clin. Oral Implants Res.11 (2000) 458. 10.1034/j.1600-0501.2000.011005458.x10.1034/j.1600-0501.2000.011005458.xSearch in Google Scholar
[7] M.C.Cehreli, K.Akça, H.Iplikçioğlu: Clin. Oral Implants Res.15 (2004) 481. 10.1111/j.1600-0501.2004.01025.x10.1111/j.1600-0501.2004.01025.xSearch in Google Scholar
[8] Y.Hattori, C.Satoh, T.Kunieda, R.Endoh, H.Hisamatsu, M.Watanabe: J. Biomechanics42 (2009) 1533. 10.1016/j.jbiomech.2009.03.04010.1016/j.jbiomech.2009.03.040Search in Google Scholar
[9] T.Morneburg, P.A.Proeschel: Int. J. Prosthodont.15 (2002) 20.Search in Google Scholar
[10] B.R.Merz, U.C.Belser: Int. J. Oral Maxillofac. Impl.15 (2000) 519.Search in Google Scholar
[11] M.R.Norton: J. Prost. Dent.83 (2000) 567. 10.1016/S0022-3913(00)70016-310.1016/S0022-3913(00)70016-3Search in Google Scholar
[12] I.S.Park, S.Y.Won, T.S.Bae, K.Y.Song, X.W.Park, T.G.Eom, C.M.Jeong: Metals Mater. Int.14 (2008) 133. 10.3365/met.mat.2008.04.13310.3365/met.mat.2008.04.133Search in Google Scholar
[13] K.Akça, M.C.Cehreli, H.Iplikçioğlu: Clin. Oral Implants Res.14 (2003) 444. 10.1034/j.1600-0501.2003.00828.x10.1034/j.1600-0501.2003.00828.xSearch in Google Scholar PubMed
[14] N.T.Green, E.E.Machtei, J.Horwitz, M.Peled: Implant Dentistry11 (2002) 137. 10.1097/00008505-200204000-0001410.1097/00008505-200204000-00014Search in Google Scholar
[15] M.G.Manda, P.P.Psyllaki, D.N.Tsipas, P.T.Koidis: J. Biomed. Mater. Res. B: Appl. Biomater.89 (2009) 264. 10.1002/jbm.b.31211Search in Google Scholar
[16] A.Piattelli, M.Piattelli, A.Scarano, L.Montesani: Int. J. Oral Maxillofac. Impl.13 (1998) 561.Search in Google Scholar
[17] J.P.Aloise, R.Curcio, M.Z.Laporta, L.Rossi, A.M.da Silva, A.Rapoport: Clin. Oral Implants Res.21 (2010) 328. 10.1111/j.1600-0501.2009.01837.x10.1111/j.1600-0501.2009.01837.xSearch in Google Scholar
[18] P.G.Coelho, P.Sudack, M.Suzuki, K.S.Kurtz, G.E.Romanos, N.R.Silva: J. Oral Rehabil.35 (2008) 917. 10.1111/j.1365-2842.2008.01886.x10.1111/j.1365-2842.2008.01886.xSearch in Google Scholar
[19] S.Harder, B.Dimaczek, Y.Açil, H.Terheyden, S.Freitag-Wolf, M.Kern: Clin. Oral Investig.14 (2010) 427. 10.1007/s00784-009-0317-x10.1007/s00784-009-0317-xSearch in Google Scholar
[20] S.Dibart, M.Warbington, M.F.Su, Z.Skobe: Int. J. Oral Maxillofac. Impl.20 (2005) 732. 16274147Search in Google Scholar
[21] V.K.Jansen, G.Conrads, E.J.Richter: Int. J. Oral Maxillofac. Impl.12 (1997) 527.Search in Google Scholar
[22] M.Gross, I.Abramovich, E.I.Weiss: Int. J. Oral Maxillofac. Impl.14 (1999) 94.Search in Google Scholar
[23] P.D.Miller, J.W.Holladay: Wear2 (1958) 133. 10.1016/0043-1648(58)90428-910.1016/0043-1648(58)90428-9Search in Google Scholar
[24] K.G.Budinski: Wear151 (1991) 203. 10.1016/0043-1648(91)90249-T10.1016/0043-1648(91)90249-TSearch in Google Scholar
[25] R.M.Cibirka, S.K.Nelson, B.R.Lang, F.A.Rueggeberg: J. Prosthet. Dent.85 (2001) 268. 10.1067/mpr.2001.11426610.1067/mpr.2001.114266Search in Google Scholar PubMed
[26] L.Steinebrunner, S.Wolfart, K.Ludwig, M.Kern: Clin. Oral Impl. Res.19 (2008) 1276. 10.1111/j.1600-0501.2008.01581.x10.1111/j.1600-0501.2008.01581.xSearch in Google Scholar PubMed
[27] W.Semper, S.Kraft, J.Mehrhof, K.Nelson: Int. J. Oral Maxillofac. Impl.25 (2010) 752.Search in Google Scholar
[28] A.Rack, T.Rack, M.Stiller, H.Riesemeier, S.Zabler, K.Nelson: J. Synchrotron Radiat.17 (2010) 289. 10.1107/S090904951000183410.1107/S0909049510001834Search in Google Scholar PubMed PubMed Central
[29] S.Zabler, T.Rack, A.Rack, K.Nelson: Rev. Sci. Instrum.81 (2010) 103703. 10.1063/1.349596610.1063/1.3495966Search in Google Scholar PubMed
[30] T.Rack, S.Zabler, A.Rack, H.Riesemeier, K.Nelson: Submitted IJOMI (2011).Search in Google Scholar
[31] A.Rack, S.Zabler, B.R.Müller, H.Riesemeier, G.Weidemann, A.Lange, J.Goebbels, M.Hentschel, W.Görner: Nucl. Instrum. & Meth. Phys. Res. A586 (2008) 327. 10.1016/j.nima.2007.11.02010.1016/j.nima.2007.11.020Search in Google Scholar
[32] A.Mirone, R.Wilcke, A.Hammersley, C.Ferrero: PyHST – High Speed Tomographic Reconstruction (2011) http://www.esrf.eu/UsersAndScience/Experiments/TBS/SciSoft/.Search in Google Scholar
[33] University of Wisconsin: Octave Homepage http://www.octave.org.Search in Google Scholar
[34] S.Dittmer, M.P.Dittmer, P.Kohorst, M.Jendras, L.Borchers, M.Stiesch: J. Prosthodont.21 (2011) 510–516.10.1111/j.1532-849X.2011.00758.xSearch in Google Scholar PubMed
[35] N.Broggini, L.M.McManus, J.S.Hermann, R.Medina, R.K.Schenk, D.Buser, D.L.Cochran: J. Dent. Res.85 (2006) 473. 10.1177/15440591060850051510.1177/154405910608500515Search in Google Scholar PubMed
[36] M.Taira, T.Kagiya, H.Harada, M.Sasaki, S.Kimura, T.Narushima, T.Nezu, Y.Araki: J. Mater. Sci.: Mater. Med.21 (2010) 267. 10.1007/s10856-009-3834-x10.1007/s10856-009-3834-xSearch in Google Scholar PubMed
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News