Startseite X-ray phase contrast and fluorescence nanotomography for material studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

X-ray phase contrast and fluorescence nanotomography for material studies

  • Heikki Suhonen , Feng Xu , Lukas Helfen , Claudio Ferrero , Pavel Vladimirov und Peter Cloetens
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The macroscopic properties of many materials are determined by structural features spanning a wide range of length scales. The nano-imaging endstation ID22NI of the European Synchrotron Radiation Facility is optimized for nanoscale imaging (X-ray focus size well below 100 nm) at high X-ray energy (17 – 29 keV), making it possible to study the interior of dense samples with a millimetric size. Computed tomography and computed laminography setups allow three dimensional imaging of a wide variety of samples, laminography being especially suited for non-destructive imaging of flat samples. The focused X-rays are used as a scanning probe for fluorescence tomography, providing sensitivity for elemental composition down to the ppm level. Projection microscopy with phase contrast is used for imaging the electron density in an extremely sensitive way. We demonstrate these capabilities by imaging a Be pebble. We found large scale cracks and nanoporosity (< 1 μm pores). Furthermore, beryllium oxide inclusions could be detected, ranging from 200 nm to several microns in size. Some of the smallest inclusions were located next to a small pore, indicating beryllium oxide formation after solidification of the structure.


* Correspondence address Dr. Heikki Suhonen, ESRF, BP 220, 38043 Grenoble CEDEX 9, France, Tel.: +33 4 76 88 28 30, E-mail:

References

[1] J.R.Heath: Acc. Chem. Res.32 (1999) 388. 10.1021/ar990059e10.1021/ar990059eSuche in Google Scholar

[2] L.Salvo, P.Cloetens, E.Maire, S.Zabler, J.J.Blandin, J.Y.Buffiere, W.Ludwig, E.Boller, D.Bellet, C.Josserond: Nucl. Instr. Meth. B200 (2003) 273. 10.1016/S0168-583X(02)01689-010.1016/S0168-583X(02)01689-0Suche in Google Scholar

[3] C.G.Schroer, J.Meyer, M.Kuhlmann, B.Benner, T.F.Günzler, B.Lengeler, C.Rau, T.Weitkamp, A.Snigirev, I.Snigireva: Appl. Phys. Lett.81 (2002) 1527. 10.1063/1.150145110.1063/1.1501451Suche in Google Scholar

[4] A.Borbély, P.Cloetens, E.Maire, G.Requena, in: F.A.Lasagni, A.F.Lasagni (Eds.), Advanced Structured Materials, Springer, Berlin, Heidelberg (2011) 151.10.1007/978-3-642-17782-8_7Suche in Google Scholar

[5] K.J.Kim: Nucl. Instr. Meth. A246 (1986) 71. 10.1016/0168-9002(86)90048-310.1016/0168-9002(86)90048-3Suche in Google Scholar

[6] G.Martinez-Criado, R.Tucoulou, P.Cloetens, P.Bleuet, S.Bohic, J.Cauzid, I.Kieffer, E.Kosior, S.Laboure, S.Petitgirard, A.Rack, J.Angel Sans, J.Segura-Ruiz, H.Suhonen, J.Susini, J.Villanova: J. Synch. Rad.19 (2012) in press. 10.1107/S090904951104249X10.1107/S090904951104249XSuche in Google Scholar PubMed

[7] http://www.esrf.eu/UsersAndScience/Experiments/Imaging/beamline-portfolio/CDR_UPBL04_future-ID16.pdf.Suche in Google Scholar

[8] P.Bleuet, A.Simionovici, L.Lemelle, T.Ferroir, P.Cloetens, R.Tucoulou, J.Susini: Appl. Phys. Lett.92 (2008) 213111. 10.1063/1.292747610.1063/1.2927476Suche in Google Scholar

[9] R.Barrett, R.Baker, P.Cloetens, Y.Dabin, C.Morawe, H.Suhonen, R.Tucoulou, A.Vivo, L.Zhang: Proc. SPIE (2011) 813904.10.1117/12.894735Suche in Google Scholar

[10] P.Cloetens, W.Ludwig, J.Baruchel, D.Van Dyck, J.Van Landuyt, J.P.Guigay, M.Schlenker: Appl. Phys. Lett.75 (1999) 2912. 10.1063/1.12522510.1063/1.125225Suche in Google Scholar

[11] M.Langer, P.Cloetens, J.P.Guigay, F.Peyrin: Med. Phys.35 (2008) 4556. 10.1118/1.297522410.1118/1.2975224Suche in Google Scholar PubMed

[12] R.Mokso, P.Cloetens, E.Maire, W.Ludwig, J.Y.Buffière: Appl. Phys. Lett.90 (2007) 144104. 10.1063/1.271965310.1063/1.2719653Suche in Google Scholar

[13] P.Bleuet, P.Cloetens, P.Gergaud, D.Mariolle, N.Chevalier, R.Tucoulou, J.Susini, A.Chabli: Rev. Sci. Instrum.80 (2009) 056101. 10.1063/1.311748910.1063/1.3117489Suche in Google Scholar PubMed

[14] J.T.A.Jones, T.Hasell, X.Wu, J.Bacsa, K.E.Jelfs, M.Schmidtmann, S.Y.Chong, D.J.Adams, A.Trewin, F.Schiffman: Nature474 (2011) 367. 10.1038/nature1012510.1038/nature10125Suche in Google Scholar PubMed

[15] K.Dzieciol, A.Borbély, F.Sket, A.Isaac, M.Di Michiel, P.Cloetens, Th.Buslaps, A.R.Pyzalla: Acta Mat.59 (2011) 671. 10.1016/j.actamat.2010.10.00310.1016/j.actamat.2010.10.003Suche in Google Scholar

[16] G.Requena, P.Cloetens, W.Altendorfer, C.Poletti, D.Tolnai, F.Warchomicka, H.P.Degischer: Scripta Mater.61 (2009) 760. 10.1016/j.scriptamat.2009.06.02510.1016/j.scriptamat.2009.06.025Suche in Google Scholar

[17] R.Ortega, P.Cloetens, G.Devès, A.Carmona, S.Bohic: PLoS ONE2 (2007) e925. 10.1371/journal.pone.000092510.1371/journal.pone.0000925Suche in Google Scholar PubMed PubMed Central

[18] A.Carmona, G.Devès, S.Roudeau, P.Cloetens, S.Bohic, R.Ortega: ACS Chem. Neurosci.1 (2009) 194. 10.1021/cn900021z10.1021/cn900021zSuche in Google Scholar PubMed PubMed Central

[19] H.Palancher, R.Tucoulou, P.Bleuet, A.Bonnin, E.Welcomme, P.Cloetens: J. Appl. Crystallogr.44 (2011) 1111. 10.1107/S002188981102442310.1107/S0021889811024423Suche in Google Scholar

[20] C.Mochales, A.Maerten, A.Rack, P.Cloetens, W.D.Mueller, P.Zaslansky, C.Fleck: Acta Biomat.7 (2011) 2994. 10.1016/j.actbio.2011.04.00710.1016/j.actbio.2011.04.007Suche in Google Scholar PubMed

[21] L.Helfen, T.Baumbach, P.Mikulík, D.Kiel, P.Pernot, P.Cloetens, J.Baruchel: Appl. Phys. Lett.86 (2005) 071915. 10.1063/1.185473510.1063/1.1854735Suche in Google Scholar

[22] L.Helfen, T.Baumbach, P.Cloetens, J.Baruchel: Appl. Phys. Lett.94 (2009) 104103. 10.1063/1.308923710.1063/1.3089237Suche in Google Scholar

[23] F.Xu, L.Helfen, A.J.Moffat, G.Johnson, I.Sinclair, T.Baumbach: J. Synchrotron Radiat.17 (2010) 222. 10.1107/S090904951000151210.1107/S0909049510001512Suche in Google Scholar PubMed PubMed Central

[24] L.Helfen, T.Morgeneyer, F.Xu, M.Mavrogordato, I.Sinclair, B.Schillinger, T.Baumbach: Int. J. Mater. Res., 103 (2012) 170. 10.3139/146.11066810.3139/146.110668Suche in Google Scholar

[25] L.Helfen, A.Myagotin, P.Mikulík, P.Pernot, A.Voropaev, M.Elyyan, M.Di Michiel, J.Baruchel, T.Baumbach: Rev. Sci. Instrum.82 (2011) 063702. 10.1063/1.359656610.1063/1.3596566Suche in Google Scholar PubMed

[26] M.Slaney, A.Kak: Principles of computerized tomographic imaging SIAM (1988).Suche in Google Scholar

[27] R.Pieritz, J.Spino, P.Vladimirov, C.Ferrero: Int. J. Mater. Res., 103 (2012) 250. 10.3139/146.11067010.3139/146.110670Suche in Google Scholar

[28] S.Chilingaryan, A.Mirone, A.Hammersley, C.Ferrero, L.Helfen, A.Kopmann, T.dos Santos Rolo, P.Vagovic. IEEE T. Nucl. Sci.58 (2011) 1447. 10.1109/TNS.2011.214168610.1109/TNS.2011.2141686Suche in Google Scholar

[29] H.Mimura, S.Handa, T.Kimura, H.Yumoto, D.Yamakawa, H.Yokoyama, S.Matsuyama, K.Inagaki, K.Yamamura, Y.Sano: Nat. Phys.6 (2009) 122. 10.1038/nphys145710.1038/nphys1457Suche in Google Scholar

[30] M.Feser, J.Gelb, H.Chang, H.Cui, F.Duewer, S.H.Lau, A.Tkachuk, W.Yun: Meas. Sci. Technol.19 (2008) 094001. 10.1088/0957-0233/19/9/09400110.1088/0957-0233/19/9/094001Suche in Google Scholar

[31] S.Kneip, C.McGuffey, J.L.Martins, S.F.Martins, C.Bellei, V.Chvykov, F.Dollar, R.Fonseca, C.Huntington, G.Kalintchenko, A.Maksimchuk, S.P.D.Mangles, T.Matsuoka, S.R.Nagel, C.A.J.Palmer, J.Schreiber, K.Ta Phuoc, A.G.R.Thomas, V.Yanovsky, L.O.Silva, K.Krushelnick, Z.Najmudin: Nat. Phys.6 (2010) 980. 10.1038/nphys178910.1038/nphys1789Suche in Google Scholar

Received: 2011-7-19
Accepted: 2011-11-12
Published Online: 2013-05-31
Published in Print: 2012-02-01

© 2012, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110664/html?lang=de
Button zum nach oben scrollen