Startseite Influence of mineralized collagen fibrils on the thermo-sensitivity of an injectable scaffold for bone regeneration
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of mineralized collagen fibrils on the thermo-sensitivity of an injectable scaffold for bone regeneration

  • Zhi Huang , Xiaoming Li , Qingling Feng , Ziqin Rong und Bo Yu
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Mineralized collagen fibrils are the basis for various connective tissues such as bone and cartilage. Injectable biomaterials incorporating mineralized collagen fibrils are applicable to a wide variety of implant types for bone regeneration. A mineralized collagen fibrils/chitosan thermo-sensitive and injectable scaffold for bone regeneration was prepared successfully. The thermo-sensitive properties of the mineralized collagen fibrils/chitosan system depended on the concentrations of mineralized collagen fibrils. 0.02 g mL−1 of mineralized collagen fibrils filler was appropriate for application since it allowed lower gelation temperature and more rapid gelation following injection, due to the increased hydrogen bonds between the collagen in mineralized collagen fibrils and chitosan.


* Correspondence address, Prof. Qingling Feng, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China, Tel.: +86 10 62 782 770, Fax: +86 10 62 771 160, E-mail:

References

[1] M.M.Stevens, J.H.George: Science310 (2005) 1135. 10.1126/science.1106587Suche in Google Scholar

[2] M.Miranda, A.Fernandez, E.Saiz, A.P.Tomsia, R.Torrecillas: Int. J. Mat. Res.101 (2010) 117.10.3139/146.110247Suche in Google Scholar

[3] F.Z.Cui, Y.Li, J.Ge: Mat. Sci. Eng., R57 (2007) 1. 10.1016/j.mser.2007.04.001Suche in Google Scholar

[4] M.Gelinsky, M.Eckert, F.Despang: Int. J. Mat. Res.98 (2007) 749.Suche in Google Scholar

[5] W.Zhang, S.S.Liao, F.Z.Cui: Chem Mater.15 (2003) 3221. 10.1021/cm030080gSuche in Google Scholar

[6] J.D.Kretlow, S.Young, L.Klouda, M.Wong, A.G.Mikos: Advanced Materials21 (2009) 3368. 10.1002/adma.200802009Suche in Google Scholar

[7] L.Klouda, A.G.Mikos: Eur. J. Pharm. Biopharm.68 (2008) 34. 10.1016/j.ejpb.2007.02.025Suche in Google Scholar

[8] K.E.Crompton, D.Tomas, D.I.Finkelstein, M.Marr, J.S.Forsythe, M.K.Horne: J. Mater. Sci.-Mater. M17 (2006) 633. 10.1007/s10856-006-9226-6Suche in Google Scholar

[9] A.Chenite, C.Chaput, D.Wang, C.Combes, M.D.Buschmann, C.D.Hoemann, J.C.Leroux, B.L.Atkinson, F.Binette, A.Selmani: Biomaterials21 (2000) 2155. 10.1016/S0142-9612(00)00116-2Suche in Google Scholar

[10] B.Nies, S.Rossler, A.Reinstorf: Int. J. Mat. Res.98 (2007) 630.10.3139/146.101510Suche in Google Scholar

[11] Z.Huang, J.Tian, B.Yu, Y.Xu, Q.Feng: Biomed. Mater.4 (2009) 55005. 10.1088/1748-6041/4/5/055005Suche in Google Scholar PubMed

[12] T.J.Webster, R.W.Siegel, R.Bizios: Biomaterials20 (1999) 1221. 10.1016/S0142-9612(99)00020-4Suche in Google Scholar

[13] J.Y.Cho, M.C.Heuzey, A.Begin, P.J.Carreau: Biomacromolecules6 (2005) 3267. 10.1021/bm050313sSuche in Google Scholar PubMed

[14] J.Cho, M.C.Heuzey, A.Begin, P.J.Carreau: Carbohyd. Polym.63 (2006) 507. 10.1016/j.carbpol.2005.10.013Suche in Google Scholar

[15] S.V.Dorozhkin: J. Colloid Interface Sci.191 (1997) 489. 10.1006/jcis.1997.4942Suche in Google Scholar PubMed

[16] S.V.Dorozhkin: Comments on Inorganic Chemistry20 (1999) 285. 10.1080/02603599908021447Suche in Google Scholar

[17] S.Bertazzo, W.F.Zambuzzi, D.D.P.Campos, T.L.Ogeda, C.V.Ferreira, C.A.Bertran: Colloids and Surfaces B-Biointerfaces78 (2010) 177. 10.1016/j.colsurfb.2010.02.027Suche in Google Scholar PubMed

[18] J.Cho, M.C.Heuzey, M.Hamdine: Macromol. Mater. Eng.292 (2007) 571. 10.1002/mame.200700009Suche in Google Scholar

[19] C.Carotenuto, N.Grizzuti: Rheologica Acta45 (2006) 468. 10.1007/s00397-005-0075-xSuche in Google Scholar

[20] H.B.Pan, B.W.Darvell: Crystal Growth & Design9 (2009) 639. 10.1021/cg801118vSuche in Google Scholar

[21] S.S.Liao, F.Z.Cui, W.Zhang, Q.L.Feng: J. Biomed. Mater. Res. B69 (2004) 158. 10.1002/jbm.b.20035Suche in Google Scholar PubMed

[22] B.O.Fowler: Inorg. Chem.13 (1974) 194. 10.1021/ic50131a039Suche in Google Scholar

[23] M.Jackson, L.P.Choo, P.H.Watson, W.C.Halliday, H.H.Mantsch: Bba-Mol. Basis Dis.1270 (1995) 1.10.1016/0925-4439(94)00056-VSuche in Google Scholar

[24] V.Renugopalakrishnan, G.Chandrakasan, S.Moore, T.B.Hutson, C.V.Berney, R.S.Bhatnagar: Macromolecules22 (1989) 4121. 10.1021/ma00200a054Suche in Google Scholar

[25] A.Sionkowka, M.Wisniewski, J.Skopinska, C.J.Kennedy, T.J.Wess: Biomaterials25 (2004) 795. 10.1016/S0142-9612(03)00595-7Suche in Google Scholar

[26] Z.G.Chen, X.M.Mo, C.L.He, H.S.Wang: Carbohyd. Polym.72 (2008) 410. 10.1016/j.carbpol.2007.09.018Suche in Google Scholar

[27] A.Chenite, S.Gori, M.Shive, E.Desrosiers, M.D.Buschmann: Carbohyd. Polym.64 (2006) 419. 10.1016/j.carbpol.2005.12.010Suche in Google Scholar

[28] M.Lavertu, D.Filion, M.D.Buschmann: Biomacromolecules9 (2008) 640. 10.1021/bm700745dSuche in Google Scholar PubMed

Received: 2010-07-15
Accepted: 2011-08-31
Published Online: 2013-06-11
Published in Print: 2011-11-01

© 2011, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Changes in the Editorial Office of IJMR
  5. Original Contributions
  6. Influence of the nature of an electric field applied during the solution heat treatment of the Al-Mg-Si-Cu Alloy AA6111 on subsequent natural aging
  7. Isothermal dynamic thermal diffusivity studies of the reduction of NiO and NiWO4 precursors by hydrogen
  8. Heating rate effects on reverse martensitic transformation in a Cu – Zn – Al shape memory alloy
  9. Effect of Ce content on the microstructure of semisolid Mg-10Al alloy
  10. Dielectric properties of low-temperature sintered Ba(Fe0.5Nb0.5)O3 with BaCu(B2O5) addition
  11. Recovery stress and shape memory stability in Ni–Ti–Cu thin wires at high temperatures
  12. Microstructure and mechanical properties of WC-Ni-Al based cemented carbides developed for engineering applications
  13. Microstructure of austenitic stainless steels of various phase stabilities after cyclic and tensile deformation
  14. High temperature workability behaviour of a modified P92 steel
  15. Influence of mineralized collagen fibrils on the thermo-sensitivity of an injectable scaffold for bone regeneration
  16. Low temperature synthesis of CuGeO3 nanoflowers from n-heptane solvent
  17. Preparation of Zn1–xMnxO nanoparticles by a simple “green” method and photocatalytic activity under visible light irradiation
  18. Surface morphology, electrical and optical properties n-type doped MOCVD grown GaSb using dimethyltellurium
  19. The role of polymethylhydrosiloxane in the sol-gel synthesis of high surface area porous silicon carbide
  20. Synthesis, characterization and dehydration–rehydration study of sol-gel derived hydroxide hydrogel of the MgO–ZrO2 system
  21. DGM News
  22. DGM News
Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110594/html?lang=de
Button zum nach oben scrollen