Startseite Modeling interfacial effects on the thermal conduction behavior of short fiber reinforced composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modeling interfacial effects on the thermal conduction behavior of short fiber reinforced composites

  • Dominik Duschlbauer , Helmut J. Böhm und Heinz E. Pettermann
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A replacement scheme is explored which uses perfectly bonded ellipsoidal replacement inhomogeneities to model the thermal conduction behavior of non-ellipsoidal fiber-like inhomogeneities with imperfect interfaces. Replacement conductivity and dilute gradient concentration tensors are introduced and their numerical evaluation from single-inhomogeneity models is discussed. The replacement tensors are incorporated into orientation averaged and multi-inclusion Mori–Tanaka schemes to study the thermal conduction responses of composites reinforced by randomly oriented short fibers at non-dilute volume fractions. Results on the effective conductivities and the local fields in individual fibers are compared to predictions from numerical homogenization of unit cells containing periodic arrangements of randomly oriented short fibers in a matrix.


* Correspondence address, Dr. Helmut J. Böhm Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology Gußhausstr. 27–29, A-1040 Vienna, Austria Tel.: +43 1 58801 31712 Fax: +43 1 58801 31799 E-mail:

Dedicated to Prof. F. D. Fischer on the occasion of his 70th birthday


References

[1] J.D.Eshelby: Proc. Roy. Soc. London A241 (1957) 376.10.1098/rspa.1957.0133Suche in Google Scholar

[2] O.D.Kellogg: Foundations of Potential Theory, Dover, New York (1953).Suche in Google Scholar

[3] H.S.Carslaw, J.C.Jaeger: Conduction of Heat in Solids, Oxford University Press, Oxford (1986).Suche in Google Scholar

[4] H.Hatta, M.Taya: Int. J. Engng. Sci.24 (1986) 1159.Suche in Google Scholar

[5] H.Jeong, D.K.Hsu, P.K.Liaw: Compos. Sci. Technol.58 (1998) 65.Suche in Google Scholar

[6] D.P.H.Hasselman, L.F.Johnson: J. Compos. Mater.21 (1987) 508.Suche in Google Scholar

[7] S.Torquato, D.M.Rintoul: Phys. Rev. Lett.75 (1995) 4067.Suche in Google Scholar

[8] D.Duschlbauer, H.E.Pettermann, H.J.Böhm: J. Appl. Phys.94 (2003) 1539.Suche in Google Scholar

[9] Y.Benveniste, T.Miloh: Int. J. Engng. Sci.24 (1986) 1537.Suche in Google Scholar

[10] M.L.Dunn, M.Taya: J. Appl. Phys.73 (1993) 1711.Suche in Google Scholar

[11] M.P.Lutz, R.W.Zimmerman: Int. J. Sol. Struct.42 (2005) 429.Suche in Google Scholar

[12] C.Q.Ru, P.Schiavone: Proc. Roy. Soc. London A453 (1997) 2551.Suche in Google Scholar

[13] T.Chen: Int. J. Sol. Struct.38 (2001) 3081.10.1016/S0020-7683(00)00191-8Suche in Google Scholar

[14] P.Gilormini, Y.Germain: Int. J. Sol. Struct.23 (1987) 413.Suche in Google Scholar

[15] M.D.Adley, D.G.Taggart: Comput. Struct.57 (1995) 773.Suche in Google Scholar

[16] M.Bornert: Comput. Mater. Sci.5 (1996) 17.10.1137/S1064827594277065Suche in Google Scholar

[17] R.D.Bradshaw, F.T.Fisher, L.C.Brinson: Compos. Sci. Engng.63 (2003) 1705.Suche in Google Scholar

[18] S.Nogales, H.J.Böhm: Int. J. Engng. Sci.46 (2008) 606.Suche in Google Scholar

[19] M.Kachanov, I.Tsukrov, B.Shafiro: Appl. Mech. Rev.47 (1994) 151.Suche in Google Scholar

[20] I.Sevostianov, M.Kachanov, T.Zohdi: Int. J. Sol. Struct.45 (2008) 4375.Suche in Google Scholar

[21] Y.Benveniste: J. Appl. Phys.61 (1987) 2840.10.1063/1.337877Suche in Google Scholar

[22] D.Duschlbauer, H.J.Böhm, H.E.Pettermann: Mater. Sci. Technol.19 (2003) 1107.Suche in Google Scholar

[23] K.Markov, L.Preziosi: Heterogeneous Media: Micromechanics Modeling Methods and Simulations, Birkhäuser, Boston, 2000.10.1007/978-1-4612-1332-1Suche in Google Scholar

[24] Y.Benveniste, G.J.Dvorak, T.Chen: J. Mech. Phys. Sol.39 (1991) 927.Suche in Google Scholar

[25] D.Duschlbauer: Computational Simulation of the Thermal Conductivity of MMCs under Consideration of the Inclusion–Matrix Interface, VDI-Verlag, Düsseldorf, 2004.Suche in Google Scholar

[26] J.F.Nye: Physical Properties of Crystals, Oxford Science Publications, Oxford, 1985.Suche in Google Scholar

[27] Y.Benveniste: Mech. Mater.6 (1987) 147.10.1016/0167-6636(87)90005-6Suche in Google Scholar

[28] A.N.Norris: J. Appl. Mech.56 (1989) 83.10.1115/1.3176070Suche in Google Scholar

[29] Y.Benveniste, T.Chen, G.J.Dvorak: J. Appl. Phys.67 (1990) 2878.Suche in Google Scholar

[30] E.Neubauer: Interface Optimization in Copper–Carbon Metal Matrix Composites, Ph.D. Thesis, Vienna University of Technology, Vienna, 2003.Suche in Google Scholar

[31] H.J.BöhmA.Eckschlager, W.Han: Comput. Mater. Sci.25 (2002) 42.Suche in Google Scholar

Received: 2010-12-16
Accepted: 2011-3-17
Published Online: 2013-06-11
Published in Print: 2011-06-01

© 2011, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Original Contributions
  2. Microstructure and adhesion of as-deposited and annealed Cu/Ti films on polyimide
  3. On the origin of inhomogeneous stress and strain distributions in single-crystalline metallic nanoparticles
  4. Contents
  5. Contents
  6. Editorial
  7. Editorial June 2011
  8. IJMR's most downloaded papers
  9. Original Contributions
  10. An excursion into the design space of biomimetic architectured biphasic actuators
  11. Strategies for fracture toughness, strength and reliability optimisation of ceramic-ceramic laminates
  12. Fracture statistics of brittle materials at micro- and nano-scales
  13. Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling
  14. Variational modeling of shape memory alloys – an overview
  15. Phase-field approach to martensitic phase transformations: Effect of martensite–martensite interface energy
  16. Modelling of diffusive and massive phase transformations in binary systems – thick interface parametric model
  17. On the strength of grain and phase boundaries in ferritic-martensitic dual-phase steels
  18. A micro-level strain analysis of a high-strength dual-phase steel
  19. Thermodynamic description of niobium-rich γ-TiAl alloys
  20. Phase transition and ordering behavior of ternary Ti–Al–Mo alloys using in-situ neutron diffraction
  21. Microstructure evolution and mechanical properties of an intermetallic Ti-43.5Al-4Nb-1Mo-0.1B alloy after ageing below the eutectoid temperature
  22. Investigation of Cu precipitation in bcc-Fe – Comparison of numerical analysis with experiment
  23. Modeling interfacial effects on the thermal conduction behavior of short fiber reinforced composites
  24. Electronic origin of structure and mechanical properties in Y and Nb alloyed Ti–Al–N thin films
  25. DGM News
  26. DGM News
Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110515/html?lang=de
Button zum nach oben scrollen