Home Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling
Article
Licensed
Unlicensed Requires Authentication

Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling

  • M. Peterlechner , T. Waitz , C. Gammer and T. Antretter
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The impact of grain size on the martensitic phase transformations of bulk nanocrystalline NiTi shape memory alloys processed by repeated cold rolling was systematically studied by differential scanning calorimetry and transmission electron microscopy. With decreasing grain size, the formation of the martensite is strongly suppressed and its thermal stability decreases. The effect of grain size on the intermediate R-phase is much smaller than that observed in the case of the martensite. Reversible and irreversible contributions to the Gibbs free energy of the martensite were obtained that are larger than those arising from the formation of martensite in coarse grains. Considering the dependence of the energy barrier on the transformation eigenstrain and the grain size, the experimental results were modelled within the general thermodynamic framework of the martensitic phase transformation.


* Correspondence address, Ao. Univ-Prof. Dr. Thomas Waitz Boltzmanngasse 5, 1090 Vienna, Austria Tel.: +43 1 427751312 Fax: +43 1 4277 51316 E-mail:

Dedicated to Prof. F. D. Fischer on the occasion of his 70th birthday


References

[1] K.Otsuka, C.M.Wayman: Shape Memory Materials, Cambridge Univ. Press, Cambridge (1998).Search in Google Scholar

[2] H.C.Tong, C.M.Wayman: Acta Metall.22 (1974) 887.10.1016/0001-6160(74)90055-8Search in Google Scholar

[3] G.B.Olson, M.Cohen: Scripta Metall.9 (1975) 1247.10.1016/0036-9748(75)90418-4Search in Google Scholar

[4] R.J.Salzbrenner, M.Cohen: Acta Metall.27 (1979) 739.10.1016/0001-6160(79)90107-XSearch in Google Scholar

[5] J.Ortin, A.Planes: Acta Metall.36 (1988) 1873.10.1016/0001-6160(88)90291-XSearch in Google Scholar

[6] P.Wollants, J.R.Roos, L.Delaey: Progress Mater. Sci.37 (1993) 227.10.1016/0079-6425(93)90005-6Search in Google Scholar

[7] J.M.Ball, R.D.James: Arch. Ration. Mech. Anal.100 (1987) 13.10.1007/BF00281246Search in Google Scholar

[8] T.Waitz, K.Tsuchiya, T.Antretter, F.D.Fischer: MRS Bulletin34 (2009) 814.10.1557/mrs2009.231Search in Google Scholar

[9] G.Reisner, B.Tiefenthaler, E.Werner, F.D.Fischer: Mater. Sci. Eng.A215 (1996) 50.10.1016/0921-5093(96)10265-3Search in Google Scholar

[10] W.Y.Yan, G.Reisner, F.D.Fischer: Acta Mater.45 (1997) 1969.10.1016/S1359-6454(96)00320-5Search in Google Scholar

[11] G.Reisner, E.A.Werner, F.D.Fischer: Int. J. Sol. Struct.35 (1998) 2457.Search in Google Scholar

[12] T.Waitz, T.Antretter, F.D.Fischer, N.K.Simha, H.P.Karnthaler: J. Mech. Phys. Sol.55 (2007) 419.10.1016/j.jmps.2006.06.006Search in Google Scholar

[13] T.Waitz, W.Pranger, T.Antretter, F.D.Fischer, H.P.Karnthaler: Mater. Sci. Eng. A481 (2008) 479.10.1016/j.msea.2007.03.122Search in Google Scholar

[14] T.Waitz, V.Kazykhanov, H.P.Karnthaler: Acta Mater.52 (2004) 137.10.1016/j.actamat.2003.08.036Search in Google Scholar

[15] T.Waitz, T.Antretter, F.D.Fischer, H.P.Karnthaler: Mater. Sci. Tech.24 (2008) 934.10.1179/174328408X302620Search in Google Scholar

[16] Q.S.Mei, L.Zhang, K.Tsuchiya, H.Gao, T.Ohmura, K.Tsuzaki: Scripta Mater.63 (2010) 977.10.1016/j.scriptamat.2010.07.018Search in Google Scholar

[17] B.Kockar, I.Karaman, J.I.Kim, Y.I.Chumlyakov, J.Sharp, C.J.Yu: Acta Mater.56, (2008) 3630.10.1016/j.actamat.2008.04.001Search in Google Scholar

[18] K.Tsuchiya, Y.Hada, T.Koyano, K.Nakajima, M.Ohnuma, T.Koike, Y.Todaka, M.Umemoto: Scripta Mater.60, (2009) 749.10.1016/j.scriptamat.2008.12.058Search in Google Scholar

[19] R.Delville, B.Mallard. J.Pilch, P.Sittner, D.Schryvers: Acta Mater.58 (2010) 4503.10.1016/j.actamat.2010.04.046Search in Google Scholar

[20] V.Demers, V.Brailovski, S.D.Prokoshkin, K.E.Inaekyan: Mater. Sci. Eng. A513 (2009) 185.10.1016/j.msea.2009.01.055Search in Google Scholar

[21] V.G.Pushin, A.I.Lotkov, Y.R.Kolobov, R.Z.Valiev, E.F.Dudarev, N.N.Kuranova, A.P.Dyupin, D.V.Gunderov, G.P.Bakach: Phys. Met. Metall.106 (2008) 120.Search in Google Scholar

[22] A.V.Sergueeva, C.Song, R.Z.Valiev, A.K.Mukherjee: Mater. Sci. Eng. A339 (2003) 159.10.1016/S0921-5093(02)00122-3Search in Google Scholar

[23] H.P.Karnthaler, T.Waitz, C.Rentenberger, B.Mingler: Mater. Sci. Eng. A387 (2004) 777.10.1016/j.msea.2004.01.125Search in Google Scholar

[24] M.Peterlechner, T.Waitz, H.P.Karnthaler: Scripta Mater.59 (2008) 566.10.1016/j.scriptamat.2008.05.004Search in Google Scholar

[25] K.Inaekyan, V.Brailovski, S.Prokoshkin, A.Korotitskiy, A.Glezer: J Alloys Comp.473 (2009) 71.10.1016/j.jallcom.2008.05.023Search in Google Scholar

[26] M.Peterlechner, J.Bokeloh, G.Wilde, T.Waitz: Acta Mater.58 (2010) 6637.10.1016/j.actamat.2010.08.026Search in Google Scholar

[27] Y.Liu, P.G.McGormick: Mater. Trans. JIM37 (1996) 691.Search in Google Scholar

[28] Y.Liu, J.I.Kim, S.Miyazaki: Phil. Mag.84 (2004) 2083.10.1080/14786430410001678262Search in Google Scholar

[29] J.K.Allafi, X.Ren, G.Eggeler: Acta Mater.50 (2002) 793.10.1016/S1359-6454(01)00385-8Search in Google Scholar

[30] P.Stadelmann: Ultramicroscopy21 (1987) 131.10.1016/0304-3991(87)90080-5Search in Google Scholar

[31] Z.Zhang, R.D.James, S.Müller: Acta Mater.57 (2009) 4332.10.1016/j.actamat.2009.05.034Search in Google Scholar

[32] R.Delville, S.Kasinathan, Z.Zhang, J.Van Humbeeck, R.D.James, D.Schryvers: Phil. Mag.90 (2010) 177.10.1080/14786430903074755Search in Google Scholar

[33] F.D.Fischer, G.Reisner: Acta Mater.46 (1998) 2095.10.1016/S1359-6454(97)00374-1Search in Google Scholar

[34] K.Otsuka, X.Ren: Progr. Mater. Sci.50 (2005) 511.10.1016/j.pmatsci.2004.10.001Search in Google Scholar

[35] Y.Liu, P.G.McGormick: Acta Metal. Mater.42 (1994) 2401.10.1016/0956-7151(94)90318-2Search in Google Scholar

[36] Y.M.Jin, G.Y.Weng: Acta Mater.50 (2002) 2967.10.1016/S1359-6454(02)00123-4Search in Google Scholar

[37] M.F.-X.Wagner, W.Windl: Acta Mater.56 (2008) 6323.10.1016/j.actamat.2008.08.043Search in Google Scholar

[38] M.Kim, G.Cho, J.Noh, Y.Jeon, Y.Kim, S.Miyazakia, T.Nam: Scripta Mater.63 (2010) 1001.10.1016/j.scriptamat.2010.07.033Search in Google Scholar

[39] K.Tsuchiya, M.Ohnuma, K.Nakajima, T.Koike, Y.Hada, Y.Todaka, M.Umemoto, in: J.Sun, L.-P.Wang, Y.Furuya, S.Trolier-McKinstry, J.Leng (Eds.), Materials and Devices for Smart Systems III, MRS Symp. Proc.1129, Warrendale, PA (2009) 113.Search in Google Scholar

Received: 2010-11-12
Accepted: 2011-4-6
Published Online: 2013-06-11
Published in Print: 2011-06-01

© 2011, Carl Hanser Verlag, München

Articles in the same Issue

  1. Original Contributions
  2. Microstructure and adhesion of as-deposited and annealed Cu/Ti films on polyimide
  3. On the origin of inhomogeneous stress and strain distributions in single-crystalline metallic nanoparticles
  4. Contents
  5. Contents
  6. Editorial
  7. Editorial June 2011
  8. IJMR's most downloaded papers
  9. Original Contributions
  10. An excursion into the design space of biomimetic architectured biphasic actuators
  11. Strategies for fracture toughness, strength and reliability optimisation of ceramic-ceramic laminates
  12. Fracture statistics of brittle materials at micro- and nano-scales
  13. Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling
  14. Variational modeling of shape memory alloys – an overview
  15. Phase-field approach to martensitic phase transformations: Effect of martensite–martensite interface energy
  16. Modelling of diffusive and massive phase transformations in binary systems – thick interface parametric model
  17. On the strength of grain and phase boundaries in ferritic-martensitic dual-phase steels
  18. A micro-level strain analysis of a high-strength dual-phase steel
  19. Thermodynamic description of niobium-rich γ-TiAl alloys
  20. Phase transition and ordering behavior of ternary Ti–Al–Mo alloys using in-situ neutron diffraction
  21. Microstructure evolution and mechanical properties of an intermetallic Ti-43.5Al-4Nb-1Mo-0.1B alloy after ageing below the eutectoid temperature
  22. Investigation of Cu precipitation in bcc-Fe – Comparison of numerical analysis with experiment
  23. Modeling interfacial effects on the thermal conduction behavior of short fiber reinforced composites
  24. Electronic origin of structure and mechanical properties in Y and Nb alloyed Ti–Al–N thin films
  25. DGM News
  26. DGM News
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110525/html
Scroll to top button