Home Variational modeling of shape memory alloys – an overview
Article
Licensed
Unlicensed Requires Authentication

Variational modeling of shape memory alloys – an overview

  • Klaus Hackl , Philipp Junker and Rainer Heinen
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Shape memory alloys can be described in a uniform way relying on energetic considerations only. We present micromechanically motivated models for single and polycrystals. The approach studied here is based on energy minimization and includes hysteretic effects via a simple dissipation ansatz. It is capable of reproducing important aspects of the material behavior such as pseudoelasticity and pseudoplasticity. The influence of anisotropies in the crystalline texture as well as in the elastic constants of the austenite and the martensitic variants is also discussed. Furthermore, regularization is applied in order to receive localized but still mesh independent results for phase distributions in a finite element implementation. The entire presentation emphasizes the usage of variational methods leading to the notion of relaxed potentials. Interrelations to various other applications of these concepts will be highlighted.


* Correspondence address, Prof. Dr. rer. nat. Klaus Hackl Insitute of Mechanics, Ruhr-University of Bochum D-44780 Bochum, Germany Tel.: +49 234 3225729 Fax: +49 234 3214154 E-mail:

Dedicated to Prof. F. D. Fischer on the occasion of his 70th birthday


References

[1] J.M.Ball, R.D.James: Arch. Rat. Mech. Anal.100 (1987) 13.10.1007/BF00281246Search in Google Scholar

[2] F.D.Fischer, M.Berveiller, K.Tanaka, E.R.Oberaigner: Archive of Applied Mechanics64 (1994) 54.Search in Google Scholar

[3] F.D.Fischer, K.Tanaka: Int. J. Solids Struct.29 (1992) 1723.10.1016/0020-7683(92)90165-PSearch in Google Scholar

[4] R.Kohn: Continuum Mech. Thermodyn.3 (1991) 193.10.1007/BF01135336Search in Google Scholar

[5] S.Stupkiewicz, H.Petryk: J. Mech. Phys. Sol.50 (2002) 2303.10.1016/S0022-5096(02)00029-7Search in Google Scholar

[6] L.Truskinovsky: Continuum Mech. Thermodyn.6 (1994) 185.10.1007/BF01135253Search in Google Scholar

[7] T.Waitz, T.Antretter, F.D.Fischer, N.K.Simha, H.P.Karnthaler: J. Mech. Phys. Solids55 (2007) 419.10.1016/j.jmps.2006.06.006Search in Google Scholar

[8] D.Helm, P.Haupt: Int. J. Solids Struct.40 (2003) 827.10.1016/S0020-7683(02)00621-2Search in Google Scholar

[9] C.Bouvet, S.Calloch, C.Lexcellent: Eur. J. Mech. A-Solids23 (2004) 37.10.1016/j.euromechsol.2003.09.005Search in Google Scholar

[10] S.Grabe, O.T.Bruhns: Int. J. Solids Struct.45 (2008) 1876.10.1016/j.ijsolstr.2007.10.029Search in Google Scholar

[11] S.Govindjee, K.Hackl, R.Heinen: Continuum Mech. Thermodyn.18 (2007) 443.10.1007/s00161-006-0038-1Search in Google Scholar

[12] S.Govindjee, A.Mielke, G.J.Hall: J. Mech. Phys. Solids51 (2003) 763.10.1016/S0022-5096(02)00105-9Search in Google Scholar

[13] R.Heinen, K.Hackl: Comput. Meth. Appl. Mech. Eng.196 (2007) 2401.10.1016/j.cma.2007.01.001Search in Google Scholar

[14] K.Hackl, R.Heinen: Continuum Mech. Thermodyn.19 (2008) 499.10.1007/s00161-008-0067-zSearch in Google Scholar

[15] O.P.Bruno, F.Reitich, P.H.Leo: J. Mech. Phys. Solids (1996) 1051.10.1016/0022-5096(96)00031-2Search in Google Scholar

[16] V.Smyshlyaev, J.Willis: Proc. R. Soc. London A454 (1998) 1573.10.1098/rspa.1998.0222Search in Google Scholar

[17] K.Hackl, R.Heinen: J. Mech. Phys. Solids56 (2008) 2832.10.1016/j.jmps.2008.04.005Search in Google Scholar

[18] D.Christ, S.Reese: Mat. Sci. Eng. A481 (2008) 343.10.1016/j.msea.2006.11.174Search in Google Scholar

[19] C.Müller, O.T.Bruhns: Int. J. Plasticity22 (2006) 1658.10.1016/j.ijplas.2006.02.010Search in Google Scholar

[20] S.Reese, C.Christ: Int. J. Plasticity24 (2008) 455.10.1016/j.ijplas.2007.05.005Search in Google Scholar

[21] B.Dacorogna: J. Funct. Anal.46 (1982) 102.10.1016/0022-1236(82)90046-5Search in Google Scholar

[22] S.Govindjee, C.Miehe: Comput. Meth. Appl. Mech. Eng.191 (2001) 215.10.1016/S0045-7825(01)00271-7Search in Google Scholar

[23] V.Smyshlyaev, J.Willis: Proc. R. Soc. London A455 (1998) 779.Search in Google Scholar

[24] M.S.Wechsler, D.S.Liebermann, T.A.Read: Trans. AIME19 (1953) 1503.Search in Google Scholar

[25] K.Bhattacharya: Microstructure of Martensite – Why it forms and how it gives rise to the shape-memory effect, Oxford University Press, New York (2003).Search in Google Scholar

[26] P.Sedlák, H.Seiner, M.Landa, V.Novák, P.Sittner, L.Mañosa: Acta Materialia53 (2005) 3643.Search in Google Scholar

[27] R.Heinen, K.Hackl, W.Windl, M.Wagner: Acta Materialia57 (2009) 3856.10.1016/j.actamat.2009.04.036Search in Google Scholar

[28] M.Wagner, W.Windl: Acta Materialia56 (2008) 6232.10.1016/j.actamat.2008.08.043Search in Google Scholar

[29] A.Mielke, F.Theil, V.I.Levitas: Arch. Rat. Mech. Anal.162 (2002) 137.10.1007/s002050200194Search in Google Scholar

[30] A.Mielke: Continuum Mech. Thermodyn.15 (2003) 351.10.1007/s00161-003-0120-xSearch in Google Scholar

[31] K.Hackl, F.D.Fischer: Proc. R. Soc. A464 (2008) 117.10.1098/rspa.2007.0086Search in Google Scholar

[32] M.Ortiz, L.Stainier: Comp. Methods Appl. Mech. Eng.171 (1999) 419.10.1016/S0045-7825(98)00219-9Search in Google Scholar

[33] T.Bartel, K.Hackl: Mat. Sci. Eng. A481 (2008) 371.10.1016/j.msea.2006.12.231Search in Google Scholar

[34] A.Schäfer, M.Wagner, in: P. Sittner, L. Heller, V. Paidar (Eds.) EDP Sciences (2009) 06031.Search in Google Scholar

[35] P.Junker, K.Hackl: PAMM9 (2009) 339.10.1002/pamm.200910143Search in Google Scholar

[36] P.Junker, K.Hackl: in P. Sittner, L. Heller, V. Paidar (Eds.), EDP Sciences (2009) 03007.Search in Google Scholar

[37] B.J.DimitrijevićK.Hackl: Tech. Mech.28 (2008) 43.Search in Google Scholar

[38] K.Hackl, R.Heinen, W.W.Schmahl, M.Hasan: Mat. Sci. Eng. A481 (2008) 347.10.1016/j.msea.2006.10.218Search in Google Scholar

Received: 2010-11-17
Accepted: 2011-4-6
Published Online: 2013-06-11
Published in Print: 2011-06-01

© 2011, Carl Hanser Verlag, München

Articles in the same Issue

  1. Original Contributions
  2. Microstructure and adhesion of as-deposited and annealed Cu/Ti films on polyimide
  3. On the origin of inhomogeneous stress and strain distributions in single-crystalline metallic nanoparticles
  4. Contents
  5. Contents
  6. Editorial
  7. Editorial June 2011
  8. IJMR's most downloaded papers
  9. Original Contributions
  10. An excursion into the design space of biomimetic architectured biphasic actuators
  11. Strategies for fracture toughness, strength and reliability optimisation of ceramic-ceramic laminates
  12. Fracture statistics of brittle materials at micro- and nano-scales
  13. Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling
  14. Variational modeling of shape memory alloys – an overview
  15. Phase-field approach to martensitic phase transformations: Effect of martensite–martensite interface energy
  16. Modelling of diffusive and massive phase transformations in binary systems – thick interface parametric model
  17. On the strength of grain and phase boundaries in ferritic-martensitic dual-phase steels
  18. A micro-level strain analysis of a high-strength dual-phase steel
  19. Thermodynamic description of niobium-rich γ-TiAl alloys
  20. Phase transition and ordering behavior of ternary Ti–Al–Mo alloys using in-situ neutron diffraction
  21. Microstructure evolution and mechanical properties of an intermetallic Ti-43.5Al-4Nb-1Mo-0.1B alloy after ageing below the eutectoid temperature
  22. Investigation of Cu precipitation in bcc-Fe – Comparison of numerical analysis with experiment
  23. Modeling interfacial effects on the thermal conduction behavior of short fiber reinforced composites
  24. Electronic origin of structure and mechanical properties in Y and Nb alloyed Ti–Al–N thin films
  25. DGM News
  26. DGM News
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110527/html
Scroll to top button