Andrade creep revisited
-
François Louchet
und Paul Duval
Abstract
Transient creep of many materials at high temperatures obeys Andrade's law, in which creep strain is proportional to the cube root of time. The present paper aims at revisiting in terms of criticality the different explanations proposed so far. In agreement with Mott's statistical theory, and using the concept of load shedding and mechanical cascades introduced in Cottrell's microscopic model, we show that Andrade creep is obtained assuming only long range back stresses and delayed obstacle overcoming, both of them involving a large number of interacting sites responsible for stress fluctuations. The time exponent is 1/3 if work hardening is linear, and larger otherwise. Andrade's creep appears as a power law approach of the linear (or χ) creep regime.
References
[1] E.N.daC.Andrade: Proc. R. Soc. A84 (1910) 1–12.Suche in Google Scholar
[2] E.N.daC.Andrade: Proc. R. Soc.90 (1914) 329–342.Suche in Google Scholar
[3] C.Crussard, PhD thesis, University of Paris, Series A, Nr. 4058, march 14th (1963) (a) Table III, (b) Table V, (c) p. 15.Suche in Google Scholar
[4] P.Duval: Ann. Geophys.32 (1976) 335–350.Suche in Google Scholar
[5] D.K.Dysthe, Yu.Podladchikov, F.Renard, J.Feder, B.Jamtveit: Phys. Rev. Lett.89 (2002) 246102-1-4.10.1103/PhysRevLett.89.246102Suche in Google Scholar
[6] N.F.Mott: Phil. Mag.44 (1953) 742–765.10.1080/14786440708521052Suche in Google Scholar
[7] J.Friedel: Dislocations, Pergamon, Oxford (1964).Suche in Google Scholar
[8] P.Feltham: Phil. Mag.45 (1954) 9–12.10.1080/14786440108520415Suche in Google Scholar
[9] E.W.Hart: Acta Metall.18 (1970) 599–610.10.1016/0001-6160(70)90089-1Suche in Google Scholar
[10] A.H.Cottrell: Phil. Mag. Letters73 (1996) 35–37.10.1080/095008396181082Suche in Google Scholar
[11] R.Becker: Phys. Z.26 (1925) 919–925.Suche in Google Scholar
[12] F.R.N.Nabarro: Phil. Mag. Lett.75 (1997) 227–233.10.1080/095008397179651Suche in Google Scholar
[13] N.F.Mott, F.R.N.Nabarro: Conference on the Strength of Solids, London Physical Society, London (1948) 1–19.Suche in Google Scholar
[14] A.H.Cottrell: Phil. Mag. A74 (1996) 1041–1046.10.1080/01418619608242175Suche in Google Scholar
[15] A.H.Cottrell: Phil. Mag. Letters75 (1997) 227–233.10.1080/095008397179552Suche in Google Scholar
[16] A.H.Cottrell: Phil. Mag. Letters75 (1997) 301–307.10.1080/095008397179552Suche in Google Scholar
[17] A.H.Cottrell: Phil. Mag. Letters82 (2002) 65–70.10.1080/09500830110104297Suche in Google Scholar
[18] A.H.Cottrell: Phil. Mag.86 (2006) 3811–3817.10.1080/14786430500380118Suche in Google Scholar
[19] A.H.Cottrell: Phil. Mag. Letters84 (2004) 685–689.10.1080/09500830500036146Suche in Google Scholar
[20] E.Orowan: J. West. Scot. Iron and Steel Inst.54 (1946–47) 45–53.10.1093/oxfordjournals.afraf.a093484Suche in Google Scholar
[21] D.C.Chrzan, M.J.Mills: Phys. Rev. Letters69 (1992) 2795–2798.10.1103/PhysRevLett.69.2795Suche in Google Scholar
[22] T.Richeton, P.Dobron, F.Chmelik, J.Weiss, F.Louchet: Mater. Sci. Eng. A424 (2006) 190–195.10.1016/j.msea.2006.03.072Suche in Google Scholar
[23] D.M.Dimiduk, C.Woodward, R.LeSar, M.D.Uchic: Science312 (2006) 1188–1190.10.1126/science.1123889Suche in Google Scholar
[24] G.S.Daehn: Acta Mater.49 (2001) 2017–2026.10.1016/S1359-6454(01)00089-1Suche in Google Scholar
[25] M-C.Miguel, A.Vespignani, M.Zaiser, S.Zapperi: Phys. Rev. Letters89 (2002) 165501-1-4.10.1103/PhysRevLett.89.165501Suche in Google Scholar
[26] M.Zaiser, P.Moretti: J. Stat. Mech. (2005) P08004.10.1088/1742-5468/2005/08/P08004Suche in Google Scholar
[27] M.Ashby, P.Duval: Cold Reg. Sci. Technol.11 (1985) 285–300.10.1016/0165-232X(85)90052-7Suche in Google Scholar
[28] O.Castelnau, P.Duval, M.Montagnat, R.Brenner: J. Geophys. Res. 113B11203 (2008) 1–14.Suche in Google Scholar
[29] P.Bak, C.Tang, K.Wiesenfeld: Phys. Rev. A38 (1988) 364–374.10.1103/PhysRevA.38.364Suche in Google Scholar
© 2009, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Introduction
- Introduction
- G. Petzow: Laudation for Peter Paul Schepp
- Dr. Schepp's retirement after 20 years of service was celebrated
- Preface to Feature Articles
- “SURFACE and INTERFACE ENGINEERING”
- Feature
- Thermodynamics of reactions and phase transformations at interfaces and surfaces
- Oxidation of palladium: from single crystal surfaces towards nanoparticles
- On the high-temperature oxidation of MCrAlY coatings
- Conducting polymers for corrosion protection: a review
- Fundamental and applied aspects of laser surface engineering
- Low-temperature gaseous surface hardening of stainless steel: the current status
- Foreword
- Foreword
- Editorial
- The scientific work of Charles Crussard (1916–2008)
- Review
- Charles Crussard's early contributions: Recrystallization in situ and a Grain Boundary study with J. Friedel and B. Cullity
- Magnetohydrodynamics applied to materials processing
- Charles Crussard's contribution to sheet metal forming and participation in IDDRG
- Glide of dislocations in non-octahedral planes of fcc metals: a review
- The deformation stage II of face-centered cubic crystals: Fifty years of investigations
- Nucleation and growth during primary recrystallization of certain metals and alloys with a face-centered cubic structure: Formation of the cube texture
- Basic
- Andrade creep revisited
- Application of cluster dynamics modeling to the precipitation in aluminum alloys
- On the effect of pre-recovery on subsequent recrystallization
- The interplay between grain boundaries and disclinations in condensed matter physics
- Plasticity of nanocrystalline materials: a critical viewpoint
- Thermoelectric power applied to metallurgy: principle and recent applications
- Notifications
- People
Artikel in diesem Heft
- Contents
- Contents
- Introduction
- Introduction
- G. Petzow: Laudation for Peter Paul Schepp
- Dr. Schepp's retirement after 20 years of service was celebrated
- Preface to Feature Articles
- “SURFACE and INTERFACE ENGINEERING”
- Feature
- Thermodynamics of reactions and phase transformations at interfaces and surfaces
- Oxidation of palladium: from single crystal surfaces towards nanoparticles
- On the high-temperature oxidation of MCrAlY coatings
- Conducting polymers for corrosion protection: a review
- Fundamental and applied aspects of laser surface engineering
- Low-temperature gaseous surface hardening of stainless steel: the current status
- Foreword
- Foreword
- Editorial
- The scientific work of Charles Crussard (1916–2008)
- Review
- Charles Crussard's early contributions: Recrystallization in situ and a Grain Boundary study with J. Friedel and B. Cullity
- Magnetohydrodynamics applied to materials processing
- Charles Crussard's contribution to sheet metal forming and participation in IDDRG
- Glide of dislocations in non-octahedral planes of fcc metals: a review
- The deformation stage II of face-centered cubic crystals: Fifty years of investigations
- Nucleation and growth during primary recrystallization of certain metals and alloys with a face-centered cubic structure: Formation of the cube texture
- Basic
- Andrade creep revisited
- Application of cluster dynamics modeling to the precipitation in aluminum alloys
- On the effect of pre-recovery on subsequent recrystallization
- The interplay between grain boundaries and disclinations in condensed matter physics
- Plasticity of nanocrystalline materials: a critical viewpoint
- Thermoelectric power applied to metallurgy: principle and recent applications
- Notifications
- People