Home Thermoelectric power applied to metallurgy: principle and recent applications
Article
Licensed
Unlicensed Requires Authentication

Thermoelectric power applied to metallurgy: principle and recent applications

  • M. Perez , V. Massardier and X. Kleber
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Thermoelectric power is the magnitude of an induced thermoelectric voltage in response to a temperature difference across a material. The thermoelectric power of metal alloys is strongly influenced by the presence of solute atoms. Measuring thermoelectric power is therefore an accurate technique for characterizing the microstructure evolution of alloys taking place during various phase transformations. The potentialities of this technique are illustrated through four examples: (i) the measurement of copper solubility limit in iron; (ii) the characterization of the strain ageing kinetics of extra-mild steels; (iii) the determination of precipitation kinetics of MoC in low alloyed steels; and (iv) the monitoring of ageing of neutron irradiated power plant steels.


* Correspondence address, Michel Perez Université de Lyon, INSA Lyon, MATEIS, UMR CNRS 5510 25 avenue Capelle, 69621 Villeurbanne Cedex, France Tel.: +33 4 72 43 80 63 Fax: +33 4 72 43 85 39 E-mail:

Dedicated to the late Prof. Charles Crussard (1916–2008)


References

[1] C.Crussard, F.Aubertin: Rev. Met.45 (1948).10.1051/metal/194845100402Search in Google Scholar

[2] C.Crussard, F.Aubertin: Rev. Met.46 (1949) 661.Search in Google Scholar

[3] C.Crussard, F.Aubertin: C.R. Acad. Sci.226 (1948) 1003.Search in Google Scholar

[4] C.Crussard, F.Aubertin: C. R. Acad. Sci.226 (1948) 75.Search in Google Scholar

[5] C.Crussard: Thermoelectric properties of metals. influence of cold-work and impurities. Publ. Phys. Soc., Report Conf. on Strength of Solids (1948).Search in Google Scholar

[6] C.Crussard, F.Aubertin: A thermoelectric and thermodynamic study of aluminium-base alloys. Effect of Si, Fe, Mg or Ti. Metal Treatment (1949–50) 204–208.Search in Google Scholar

[7] R.B.Roberts: Phil. Mag.36 (1977).10.1080/00144940.1977.9939296Search in Google Scholar

[8] L.Simonet: Effet des hétérogénéités sur le Pouvoir Thermoélectrique de l'acier de cuve. PhD thesis, INSA Lyon (2006).Search in Google Scholar

[9] R.Borrelly, J.L.Bouvier-Volaille: Traitements thermiques221 (1988) 4345.Search in Google Scholar

[10] http://www.techlab.fr/htm/PTE.htmSearch in Google Scholar

[11] X.Kleber: NDTE Int.41 (2008) 364370.10.1016/j.ndteint.2008.01.003Search in Google Scholar

[12] F.J.Blatt, P.A.Schroeder, C.L.Foiles, D.Greig: Thermoelectric power of metals. Plenum press, New York and London (1976).10.1007/978-1-4613-4268-7Search in Google Scholar

[13] L.Nordheim, C.J.Gorter: Physica2 (1935) 383.10.1016/S0031-8914(35)90101-XSearch in Google Scholar

[14] N.Lavaire, J.Merlin, V.Sardoy: Scripta Mater.44 (2001) 553559.10.1016/S1359-6462(00)00634-5Search in Google Scholar

[15] V.Guetaz: Caractérisation de l'état d'engagement de l'azote au cours du process de transformation d'aciers calmés à l'aluminium – Conséquences sur les propriétés d'emboutassibilité après recuit continu. PhD thesis, INSA Lyon (2002).Search in Google Scholar

[16] V.Massardier, E.Lepatezour, M.Soler, J.Merlin: Met. Trans A36 A (2005) 17451755.10.1007/s11661-005-0039-xSearch in Google Scholar

[17] N.Lavaire: Etude des phénomènes à l'origine du vieillissement des aciers pour emballage à Ultra Bas Carbone (ULC): Apport du Pouvoir ThermoElectrique à la caractérisation des états microstructuraux. PhD thesis, INSA Lyon (2001).Search in Google Scholar

[18] V.Massardier, T.Epicier, P.Merle: Acta Mater.48 (2000) 29112924.10.1016/S1359-6454(00)00085-9Search in Google Scholar

[19] J.S.Kirkaldy: Rev. Can. Phys.36 (1958) 899925.10.1139/p58-096Search in Google Scholar

[20] M.Perez, F.Perrard, V.Massardier, X.Kleber, A.Deschamps, H.De Monestrol, P.Pareige, G.Covarel: Phil. Mag.85 (2005) 21972210.10.1080/14786430500079645Search in Google Scholar

[21] M.Perez: Scripta Mater.52 (2005) 709712.10.1016/j.scriptamat.2004.12.026Search in Google Scholar

[22] D.Blavette, A.Bostel, J.M.Sarrau, B.Deconihout, A.Menand: Nature363 (1993) 432435.10.1038/363432a0Search in Google Scholar

[23] Thermo-calc software: http://www.thermocalc.comSearch in Google Scholar

[24] G.Salje, M.Feller-Kniepmeier: J. Appl. Phys.49 (1978) 229232.10.1063/1.324336Search in Google Scholar

[25] G.R.Speich, I.A.Gula, R.M.Fishe: Electron Microprobe. Wiley Press, New York (1966).Search in Google Scholar

[26] N.Lavaire, V.Massardier, J.Merlin: Scripta Mat.50 (2004) 131135.10.1016/j.scriptamat.2003.09.007Search in Google Scholar

[27] V.Massardier, N.Lavaire, M.Soler, J.Merlin: Scripta Mat.50 (2004) 14341439.10.1016/j.scriptamat.2004.03.010Search in Google Scholar

[28] M.Houze, X.Kleber, F.Fouquet, M.Delnondedieu: Scripta Mater.51 (2004) 11711176.10.1016/j.scriptamat.2004.07.013Search in Google Scholar

Received: 2008-9-19
Accepted: 2009-8-17
Published Online: 2013-06-11
Published in Print: 2009-10-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Introduction
  4. Introduction
  5. G. Petzow: Laudation for Peter Paul Schepp
  6. Dr. Schepp's retirement after 20 years of service was celebrated
  7. Preface to Feature Articles
  8. “SURFACE and INTERFACE ENGINEERING”
  9. Feature
  10. Thermodynamics of reactions and phase transformations at interfaces and surfaces
  11. Oxidation of palladium: from single crystal surfaces towards nanoparticles
  12. On the high-temperature oxidation of MCrAlY coatings
  13. Conducting polymers for corrosion protection: a review
  14. Fundamental and applied aspects of laser surface engineering
  15. Low-temperature gaseous surface hardening of stainless steel: the current status
  16. Foreword
  17. Foreword
  18. Editorial
  19. The scientific work of Charles Crussard (1916–2008)
  20. Review
  21. Charles Crussard's early contributions: Recrystallization in situ and a Grain Boundary study with J. Friedel and B. Cullity
  22. Magnetohydrodynamics applied to materials processing
  23. Charles Crussard's contribution to sheet metal forming and participation in IDDRG
  24. Glide of dislocations in non-octahedral planes of fcc metals: a review
  25. The deformation stage II of face-centered cubic crystals: Fifty years of investigations
  26. Nucleation and growth during primary recrystallization of certain metals and alloys with a face-centered cubic structure: Formation of the cube texture
  27. Basic
  28. Andrade creep revisited
  29. Application of cluster dynamics modeling to the precipitation in aluminum alloys
  30. On the effect of pre-recovery on subsequent recrystallization
  31. The interplay between grain boundaries and disclinations in condensed matter physics
  32. Plasticity of nanocrystalline materials: a critical viewpoint
  33. Thermoelectric power applied to metallurgy: principle and recent applications
  34. Notifications
  35. People
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110198/html
Scroll to top button