Effects of Lanthanum on Magnetic Behavior and Hardness of Electroless Ni–Fe–P Deposits
-
Wei-Qing Huang
Abstract
In this paper, the effects of lanthanum on the deposition rate, composition, structure, hardness, magnetic and anti-corrosion behaviors of electroless Ni – Fe – P deposits prepared from sulphate bath were investigated. In order to characterize the deposits, gravimetric and electrochemical measurement, scanning electron microscopy, X-ray diffraction, and magnetic measurement were applied. The results show that the deposition rate decreases with increasing LaCl3 · 7 H2O concentration in the bath due to the competition adsorptions between rare earth lanthanum, metal ions, and hypophosphite on the surface of the substrate. The magnetic behavior of the deposit is strongly dependent on the LaCl3 · 7 H2O concentration in the bath. The coercive force of the deposit increases, while its saturation magnetization decreases with LaCl3 · 7 H2O concentration increase. When the LaCl3 · 7 H2O concentration reaches 1.50 g l – 1, the deposit shows a rectangular hysteresis loop with high coercivity. The moderate addition of lanthanum in the bath will increase the hardness of the deposits as a result of the change of composition and structure of deposits. However, the addition of lanthanum has little effect on the corrosion resistance of the deposits.
References
[1] A.Vaskelis, J.Jaciauskiene, I.Stalnioniene: J. Electroanal. Chem.600 (2007) 6.Suche in Google Scholar
[2] T.Homma, Y.Sezai, T.Osaka: Electrochim. Acta42 (1997) 3041.Suche in Google Scholar
[3] D.Mencer: J. Alloys Compd.306 (2000) 158.10.1016/S0925-8388(00)00786-6Suche in Google Scholar
[4] Y.Meng, L.-L.Wang, G.-F.Huang, W.-Q.Huang, B.-S.Zou: Int. J. Mat. Res.98 (2007) 217.Suche in Google Scholar
[5] L.L.Wang, W.Q.Huang, G.F.Huang, L.H.Zhao: Z. Metallkd.93 (2002) 298.Suche in Google Scholar
[6] P.Egberts, P.Brodersen, G.D.Hibbard: Mater. Sci. Eng. A441 (2006) 336.Suche in Google Scholar
[7] D.L.Grimmett, M.Schwartz, K.Nobe: J. Electrochem. Soc.140 (1993) 973.Suche in Google Scholar
[8] T.Osaka: Electrochim. Acta44 (1999) 3885.10.1016/S0013-4686(99)00095-XSuche in Google Scholar
[9] L.L.Wang, L.H.Zhao, G.F.Huang, X.Yuan, B.Zhang, J.Zhang: Surf. Coat. Technol.126 (2000) 272.Suche in Google Scholar
[10] S.L.Wang: Surf. Coat. Technol.186 (2004) 372.Suche in Google Scholar
[11] A.F.Schmeckenbecher: J. Electrochem. Soc.113 (1966) 778.10.1149/1.2424118Suche in Google Scholar
[12] T.Osaka: Electrochim. Acta44 (1999) 3885.10.1016/S0013-4686(99)00095-XSuche in Google Scholar
[13] M.Sridharan, K.Shepoard: J. Appl. Electrochem.27 (1997) 1198.Suche in Google Scholar
[14] M.H.Seo, D.J.Kim, J.S.Kim: Thin Solid Films489 (2005) 122.Suche in Google Scholar
[15] G.-F.Huang, W.-Q.Huang, L.-L.Wang, B.-S.Bou, D.-P.Chen, D.-Y.Li, J.-M.Wei, J.-H.Zhang: Int. J. Electrochem. Sci.2 (2007) 321.Suche in Google Scholar
[16] A.Kohn, M.Eizenberg, Y.Shacham-Diamand: Appl. Surf. Sci.212–213 (2003) 367.Suche in Google Scholar
[17] G.Lu, G.Zangari: Electrochim. Acta47 (2002) 2969.10.1016/j.electacta.2011.11.056Suche in Google Scholar
[18] M.Palaniappa, S.K.Seshadri: Mater. Sci. Eng. A460 (2007) 638.Suche in Google Scholar
[19] A.Nagano, M.Naka, J.Nasu, S.Ishihara: Phys. Rev. Lett.99 (2007) 217202.Suche in Google Scholar
[20] Y.Yamasaki, S.Miyasaka, T.Goto, H.Sagayama, T.Arima, Y.Tokura: Phys. Rev. B76 (2007) 184418.Suche in Google Scholar
[21] R.Lora-Serrano, C.Giles, E.Granado, D.J.Garcia, E.Miranda, O.Agüro, L.Mendonça Ferreira, J.G.S.Duque, P.G.Pagliuso: Phys. Rev. B74 (2006) 214404.Suche in Google Scholar
[22] R.I.R.Blyth, C.Searle, N.P.Tucker, S.D.Barrett: Phys. Rev. B70 (2004) 045402.Suche in Google Scholar
[23] M.Salluzzo, G.M.de Luca, D.Marrè, M.Putti, M.Tropeano, U.Scotti di Uccio, R.Vaglio: Phys. Rev. B72 (2005) 134521.Suche in Google Scholar
[24] S.H.Choi, J.H.Oh, T.Ko: J. Magn. Magn. Mater.272–276 (2004) 2233.Suche in Google Scholar
[25] F.E.Atalay: J. Magn. Magn. Mater.272–276 (2004) 2415.10.1016/j.jmmm.2003.12.842Suche in Google Scholar
[26] F.S.Hoor, C.L.Aravinda, M.F.Ahmed, S.M.Mayanna: J. Power Sources103 (2001) 147.Suche in Google Scholar
[27] W.Y.Ching, Y.N.Xu: J. Magn. Magn. Mater.209 (2000) 28.10.1016/j.jmmm.2013.02.001Suche in Google Scholar
[28] G.-F.Huang, W.-Q.Huang, L.-L.Wang, Y.Meng, Z.Xie, B.S.Zou: Electrochim. Acta51 (2006) 4471.Suche in Google Scholar
[29] M.D.Ger, Y.Sung, J.L.Ou: Mater. Chem. Phys.89 (2005) 383.Suche in Google Scholar
[30] N.Petrov, Y.Sverdlov, Y.Shacham-Diamand: J. Electrochem. Soc.149 (2002) C187.10.1149/1.1452118Suche in Google Scholar
© 2009, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Feature
- Nd–Fe–B permanent magnets a quarter century later: implications for patentability
- Micromagnetism of advanced hard magnetic materials
- Magnetism of nanostructured materials for advanced magnetic recording
- Basic
- A Study of the Al–Mg–B Ternary Phase Diagram
- Effects of Lanthanum on Magnetic Behavior and Hardness of Electroless Ni–Fe–P Deposits
- Interfacial Reactions between Lead-Free Solders and the Multilayer Au/Ni/SUS304 Substrate
- Melting Behavior of Sn–Bi Alloy Powder Compacts Observed Using Optical Dilatometry
- High-Strength Mg-Based Bulk Metallic Glass Composites with Remarkable Plasticity
- Determination of Liquidus Temperature in Sn–Ti–Zr Alloys by Viscosity, Electrical Conductivity and XRD Measurements
- The coupled FEM analysis of super-high angular speed polishing of diamond films
- Applied
- Comparison of Depth-Sensing Indentation at Ultramicroscopic Contacts by Single- and Multiple-Partial-Unload Cycles
- Sintering Behavior of ZnO: Mn Ceramics Fabricated from Sol-Gel Derived Nanocrystalline powders
- Suitability of Maraging Steel Weld Cladding for Repair of Die-Casting Tooling
- Enhanced properties of functionally graded Cu–Cr powder compacts
- Influence of Cr on the microstructure and mechanical properties of Ti–Si Eutectic Alloys
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Feature
- Nd–Fe–B permanent magnets a quarter century later: implications for patentability
- Micromagnetism of advanced hard magnetic materials
- Magnetism of nanostructured materials for advanced magnetic recording
- Basic
- A Study of the Al–Mg–B Ternary Phase Diagram
- Effects of Lanthanum on Magnetic Behavior and Hardness of Electroless Ni–Fe–P Deposits
- Interfacial Reactions between Lead-Free Solders and the Multilayer Au/Ni/SUS304 Substrate
- Melting Behavior of Sn–Bi Alloy Powder Compacts Observed Using Optical Dilatometry
- High-Strength Mg-Based Bulk Metallic Glass Composites with Remarkable Plasticity
- Determination of Liquidus Temperature in Sn–Ti–Zr Alloys by Viscosity, Electrical Conductivity and XRD Measurements
- The coupled FEM analysis of super-high angular speed polishing of diamond films
- Applied
- Comparison of Depth-Sensing Indentation at Ultramicroscopic Contacts by Single- and Multiple-Partial-Unload Cycles
- Sintering Behavior of ZnO: Mn Ceramics Fabricated from Sol-Gel Derived Nanocrystalline powders
- Suitability of Maraging Steel Weld Cladding for Repair of Die-Casting Tooling
- Enhanced properties of functionally graded Cu–Cr powder compacts
- Influence of Cr on the microstructure and mechanical properties of Ti–Si Eutectic Alloys
- Notifications
- DGM News