Reassessment of the Ni–B system supported by key experiments and first-principles calculation
-
Wei-Hua Sun
, Yong Du , Yi Kong , Hong-Hui Xu , Wei Xiong und Shu-Hong Liu
Abstract
The Ni – B system is reassessed based on critical literature review and the results of key experiments and first-principles calculation. Eight Ni – B alloys are prepared by arc melting the pure elements. The samples are analyzed by means of chemical analysis, X-ray diffraction and differential thermal analysis. NiB12 and NiB2 are not found in the equilibrium condition. Four invariant temperatures are measured: 1098 ± 2 °C for L ↔ fcc(Ni) + Ni3B, 1114 ± 2 °C for L ↔ Ni3B + Ni2B, 1025 ± 2 °C for L ↔ Ni2B + orthorhombic-Ni4B3 and 1044 ± 2 °C for L + βB ↔ NiB. The heat capacity of NiB is determined to be 58.46092 + 0.0012 · T – 1 597 915.59793 · T– 2 (J mol– 1 K– 1, T in Kelvin) in the temperature range from 40 to 950 °C by differential scanning calorimetry. First-principles calculation indicates that the energy of inserting a B atom into the interstitial site of the lattice for Ni atoms is lower than that of substituting for an Ni atom with a B atom. Consequently, the sublattice model (Ni) (B, Va) in which B atoms occupy the interstitial sites is employed for the fcc(Ni) phase rather than the model (Ni, B) (Va) in which B atoms substitute for Ni atoms. In addition, the enthalpies of formation for the five compounds are obtained via first-principles calculation to supplement the modeling. A self-consistent set of thermodynamic parameters for the Ni – B system is finally obtained and the calculated results show good agreement with the experimental data.
References
[1] S.Pal, M.D.Martyniak, W.E.Catron: U.S. Pat. Appl. Publ. (2008) 5.Suche in Google Scholar
[2] C.E.Campbell, U.R.Kattner: J. Phase Equilibria20 (1999) 485.Suche in Google Scholar
[3] T.Tokunaga, K.Nishio, H.Ohtani, M.Hasebe: Mater. Trans.44 (2003) 1651.Suche in Google Scholar
[4] K.Hack, T.G.Chart: “Critical Assessment of Thermodynamic Data for the Nickel-Boron System”, Commission de Communautes Europeenes, CECA No 7210-CA/3/303 (1981).Suche in Google Scholar
[5] L.Kaufman, B.Uhrenius, D.Birnie, K.Taylor: Calphad8 (1984) 25.Suche in Google Scholar
[6] P.K.Liao, K.E.Spear: Phase diagrams of Binary Nickel Alloys, P.Nash (Ed.), ASM International, Materials Park, OH, USA (1991) 31.Suche in Google Scholar
[7] SGTE: “Thermodynamic Properties of Inorganic Materials: Binary Systems”, Landolt-Börnstein, Group IV, Physical Chemistry, Springer-Verlag, Berlin, Heidelberg, Germany (2004).Suche in Google Scholar
[8] O.Teppo, P.Taskinen: Mater. Sci. Technol.9 (1993) 205.Suche in Google Scholar
[9] K.I.Portnoi, V.M.Chubarov, V.M.Romashov, M.K.Levinskaya, S.E.Salibekov: Dokl. Akad. Nauk SSSR169 (1966) 1104.Suche in Google Scholar
[10] K.I.Portnoi, V.M.Romashov, V.M.Chubarov, M.K.Levinskaya, S.E.Salibekov: Porosh. Metall. (Kiev)7 (1967) 15.Suche in Google Scholar
[11] A.S.Sobolev, T.F.Fedorov: Izv. Akad. Nauk SSSR, Met.3 (1967) 723.Suche in Google Scholar
[12] J.D.SchöbelH.H.Stadelmaier: Z. Metallkd.56 (1965) 856.10.1515/ijmr-1965-561209Suche in Google Scholar
[13] S.Omori, Y.Hashimoto, S.Nakamura, K.Hidaka, Y.Kohira: F. Oyob. Funmatsu Yak.19 (1971) 132.Suche in Google Scholar
[14] E.Lugscheider, O.Knotek, H.Reimann: Monatsh. Chem.105 (1974) 80.Suche in Google Scholar
[15] G.S.Hoppin: Weld. J.36 (1957) 528.Suche in Google Scholar
[16] P.T.Kolomytsev: Izv. Akad. Nauk SSSR, Metall. Topl.3 (1960) 83.Suche in Google Scholar
[17] Y.O.Esin, V.M.Baev, P.V.Gel'd, M.S.Petrushevskii: Izv. Akad. Nauk SSSR, Met.4 (1974) 73.Suche in Google Scholar
[18] Y.O.Esin, V.M.Baev, P.V.Gel'd: Pr-vo Ferrosplavov, Moskva8 (1980) 32.Suche in Google Scholar
[19] V.T.Vitusevith: Rasplavy4 (1992) 83.Suche in Google Scholar
[20] V.T.Witusiewicz: J. Alloys Compd.203 (1994) 103.10.1016/0925-8388(94)90720-XSuche in Google Scholar
[21] V.T.Witusiewicz: Thermochim. Acta264 (1995) 41.10.1016/0040-6031(95)02345-3Suche in Google Scholar
[22] V.T.Witusiewicz: J. Alloys Compd.221 (1995) 74.10.1049/me:19950512Suche in Google Scholar
[23] O.S.Gorelkin, A.S.Dubrovin, O.D.Kolesnikova, N.A.Chirkov: Zh. Fiz. Khim.46 (1972) 754.Suche in Google Scholar
[24] S.Omori, Y.Hashimoto: F. Oyob. Funmatsu Yak.20 (1973) 80.Suche in Google Scholar
[25] S.Sato, O.J.Kleppa: Metal. Trans. B13 (1982) 251.Suche in Google Scholar
[26] S.V.Meschel, O.J.Kleppa: J. Chim. Phys.90 (1993) 349.Suche in Google Scholar
[27] E.K.Storms, E.G.Szklarz: J. Less-Common Met.135 (1987) 229.Suche in Google Scholar
[28] R.Ushio, O.Ogawa: Metal. Trans. B22 (1991) 47.Suche in Google Scholar
[29] A.Masago, K.Shirai, H.Katayama: Phys. Rev. B73 (2006) 1.Suche in Google Scholar
[30] A.T.Dinsdale: Calphad15 (1991) 317.10.1016/0364-5916(91)90030-NSuche in Google Scholar
[31] M.Hillert, M.Jarl: Calphad2 (1978) 227.Suche in Google Scholar
[32] Y.Du, J.C.Schuster, Y.A.Chang, Z.P.Jin, B.Y.Huang: Z. Metallkd.93 (2002) 1157.Suche in Google Scholar
[33] T.V.Rompaey, K.C.Hari Kumar, P.Wollants: J. Alloys Compd.334 (2002) 17.Suche in Google Scholar
© 2009, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Congratulations
- The 100th Volume of “International Journal of Materials Research” – the DGM congratulates!
- Feature
- The anatomy of the International Journal of Materials Research1 in the light of bibliometry
- Verhakungen, dislocations, solitons, and kinks
- Review
- Do we need a new conference series for the German materials community?
- Basic
- Bainite orientation in plastically deformed austenite
- Microstructure evolution during a liquid–liquid decomposition under the common action of the nucleation, growth and Ostwald ripening of droplets
- Surface tension of liquid binary alloys – theory versus experiment
- Reassessment of the Ni–B system supported by key experiments and first-principles calculation
- A combined microtensile testing and nanoindentation study of the mechanical behavior of nanocrystalline LIGA Ni–Fe
- Effect of electropulsing on the tensile flow stress of ultrafine-grained 3Y-TZP at 1400°C
- Applied
- Experimental survey on fluid brazing in ancient goldsmith' art
- Correlation between heat treatment, microstructure and mechanical properties of a hot-work tool steel
- Study of near surface changes in yttria-doped tetragonal zirconia after low temperature degradation
- Thermographic analysis of AlSi12 during crystallisation as a function of cooling rate
- Oxidation behaviour of experimental Co–Re-base alloys in laboratory air at 1000°C
- Notification
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Congratulations
- The 100th Volume of “International Journal of Materials Research” – the DGM congratulates!
- Feature
- The anatomy of the International Journal of Materials Research1 in the light of bibliometry
- Verhakungen, dislocations, solitons, and kinks
- Review
- Do we need a new conference series for the German materials community?
- Basic
- Bainite orientation in plastically deformed austenite
- Microstructure evolution during a liquid–liquid decomposition under the common action of the nucleation, growth and Ostwald ripening of droplets
- Surface tension of liquid binary alloys – theory versus experiment
- Reassessment of the Ni–B system supported by key experiments and first-principles calculation
- A combined microtensile testing and nanoindentation study of the mechanical behavior of nanocrystalline LIGA Ni–Fe
- Effect of electropulsing on the tensile flow stress of ultrafine-grained 3Y-TZP at 1400°C
- Applied
- Experimental survey on fluid brazing in ancient goldsmith' art
- Correlation between heat treatment, microstructure and mechanical properties of a hot-work tool steel
- Study of near surface changes in yttria-doped tetragonal zirconia after low temperature degradation
- Thermographic analysis of AlSi12 during crystallisation as a function of cooling rate
- Oxidation behaviour of experimental Co–Re-base alloys in laboratory air at 1000°C
- Notification
- DGM News